
Michael B. Sullivan, Siva Kumar Sastry Hari,
Brian Zimmer, Timothy Tsai, Stephen W. Keckler

2

GPUS FOR HIGH-RELIABILITY APPLICATIONS

https://www.pcgamer.com/ornls-summit-is-the-most-powerful-
supercomputer-in-the-world/

ORNL Summit (World’s Most Powerful Supercomputer)
NVIDIA Tesla V100 GPUs

https://blogs.nvidia.com/blog/2017/07/11/audi-2018-a8-
nvidia-barcelona/

Audi 2018 A8 (World’s First Level-3 Autonomous Car)
NVIDIA Tegra K1

3

STORAGE ERROR PROTECTION WITH ECC

I-Cache

Fetch &

Decode

Warp

Sched.

Dispatch

Register

File

Execution

Pipelines

Writeback

L
1
 a

n
d
 S

h
a
re

d
 M

e
m

X
 B

a
r

L2 DRAM

L2 DRAM

L2 DRAM

…

Storage ECC Applicable

SMs / On-Core Memory Sub-System

Unprotected!

4

INSTRUCTION DUPLICATION

Explicit checking code before any:
• Loads/Stores
• Branches
• Non-deterministic Instructions (e.g. Clock Read)

5

INSTRUCTION DUPLICATION FOR PIPELINE
ERROR DETECTION

Fetch &

Decode

Warp

Sched.

Dispatch

Register

File

Execution

Pipelines

Writeback

L
1
 a

n
d
 S

h
a
re

d
 M

e
m

X
 B

a
r

L2 DRAM

L2 DRAM

L2 DRAM

…

Instruction Duplication

Storage ECC Applicable

Streaming Multiprocessors (SMs) Memory Sub-System

I-Cache

2x RF storage
> 2x instruction bloat
→ 49% average slowdown ☹

+ Reliability!
~10x SDC reduction

6

SWAPCODES

Register file error
detection

functions as
normal but can

now
detect pipeline

errors!
1x RF storage
< 2x instruction bloat
→ less slowdown☺

7

SWAPCODES
Example: Error in Original Instruction!

Error in original instruction: corrupted data bits
Error in shadow instruction: corrupted check-bits

8

SWAPCODES DESIGN PRINCIPLES
Three Key Principles Simplify Implementation

1.

2.

No New Per-Thread State

• In a massively-threaded GPU, per-thread state is expensive!

• No redundant registers or new microarchitectural buffers.

No New Hardware Error Checkers

• No new self-checking checkers

Full Error Containment

• Errors are detected immediately and cannot “leak”

3.

9

SWAPCODES CHANGES
Hardware-Software Cooperative with Modest Changes

:

} Software

Hardware

Overheads evaluated with synthesis estimates and shown to be small.

10

STORAGE CORRECTION
Challenge: Just Correcting All Single-Bit Errors is Not Safe!

Problem: Error in Shadow (Second) Instruction:

(3+ Bits)

11

STORAGE CORRECTION
Challenge: Just Correcting All Single-Bit Errors is Not Safe!

Problem: Error in Shadow (Second) Instruction:

Miscorrection!

(3+ Bits)

→ Compute error correction is unsafe.

12

Preserving Storage Correction
Allowing Storage Error Correction, Promoting ALL Compute Errors to DUEs

“Data Parity Bit” Parity bit JUST for the data.

• Generated by the original
instruction, not swapped.

13

Preserving Storage Correction

Parity bit JUST for the data.

• Generated by the original
instruction, not swapped.

Semantics:

• Data parity bit mismatch: the
single-bit error is a storage error
and it is allowed.

• Data parity bit does not mismatch:
the single-bit error is a compute
error and it is flagged as a DUE.

Allowing Storage Error Correction, Promoting ALL Compute Errors to DUEs

“Data Parity Bit”

Results: Single-Bit Correction, Double-Bit Detection (Storage Errors)
Triple-Bit Detection (Compute Errors)

14

OPTIMIZATION: MOVE PROPAGATION
Avoiding the Need to Duplicate MOV Instructions

So long as the ECC

check-bits are

propagated, then

MOV instructions

do not need to be

duplicated.

15

OPTIMIZATION: SWAP-PREDICT
Avoiding the Need to Duplicate Other Instructions (e.g. ±, ×)

Operation and ECC-specific

check-bit prediction can avoid

the need to duplicate selected

other operations.

Note: “Predict” as in

Parity Prediction. Not

speculative!

16

SWAP-PREDICT (CONTINUED)
Avoiding the Need to Duplicate Other Instructions (e.g. ±, ×)

Case Study: Residue codes for GPUs,

with a novel MAC prediction circuits.

Difference from Concurrent Checking:
1. Opportunistic! For selected instructions.
2. No new checkers! Reusing RF decoder.

17

PERFORMANCE EVALUATION

We implement and run each approach on a P100.

Instruction Duplication: Fully functional prototype (verified using error injection and
neutron beam testing).

SwapCodes: Software changes only.

• Performance should be representative so long as the modest hardware changes do
not alter the system clock period. (Highly likely.)

Benchmarks: Rodinia 2.3, the DOE miniapp “SNAP”, and MatMul from the CUDA SDK.

Implemented in the Compiler, Run on Silicon

18

PERFORMANCE
Clustering Results into 4 Classes!

Legend:

SW-Dup: Instruction Duplication Baseline
Swap-ECC: SwapCodes with Move Propagation
Pre-AddSub: Swap-Predict for ±
Pre-MAD: Swap-Predict for ±, ×

19

PERFORMANCE
Clustering Results into 4 Classes!

❶ Swap-ECC Responders:

High overhead with SW-Dup, Swap-ECC brings this to ~0.

Little further benefit from Swap-Predict.

Other Benchmarks: pathfinder, srad_v2, kmeans, needle

x5

20

PERFORMANCE

x5

❷ Swap-Predict Responders:

SwapCodes helps.

Benefit progressively more with prediction.

Other Benchmarks: b+tree, lud, hotspot, heartwall

x5

21

PERFORMANCE

x5

❸ Already Fine:

Even SW-Dup has ~0 overhead.

Other Benchmarks: mummer, bfs,
MatMul (CUDA SDK)

x5 x3

22

PERFORMANCE

x5

❹ Non-Responders:

Floating-point compute
bound.

Modest improvements.

Other Benchmarks:
None

x3x5 x1

23

PERFORMANCE

x5 x1x3x5

49%
21%

16%
15%

24

RESILIENCE

>98.8% pipeline
errors with a SEC-
DED (TED) code.

>99.3% with an
equal-redundancy
residue code.

Using Gate-Level Error Injection Into (Example) Compute Pipelines

25

CONCLUSION

Reduces the overhead of intra-thread instruction duplication by >50% on average,
despite requiring:

• No new per-thread state

• No new hardware error checkers

With a standard SEC-DED protected register file, detects >98.8% of pipeline errors.

Swap-Predict can further optimize overheads to achieve just a 16% performance
overhead with check-bit prediction for addition and subtraction.

SwapCodes: Hardware-Software Acceleration for Instruction Duplication

26

BACKUP

27

PIPELINE ERROR DETECTION OPTIONS

High Level
Duplication

Thread
Duplication

Instruction
Duplication

Concurrent
Checking

SwapCodes

Transparent No No Yes Yes Yes

H/W
Changes

None None None Many Few

Perf.
Overhead

High High Medium—High None—Low Low

Major
Issue

Nondeteminism

& Perf.

Threads

& Perf.
Performance

Scope &

Complexity
None?

28

Preserving Storage Correction

We describe two algorithms:

❶ SEC-DED-DP:

Adds a data parity bit to the SEC-DED decoder.

+ No constraints
- Requires a bit of redundancy

❷ SEC-DP:

Adds a data parity bit to the SEC decoder, and
uses selective bit placement to achieve DED.

+ No redundancy
- Constrains the RF bit placement

Two Flavors, Each with SEC-DED Protection Against Storage Errors

“Data Parity Bit”

29

STORAGE CORRECTION
Challenge: Just Correcting All (Apparent) Single-Bit Errors is Not Safe!

❶ Error in Original (First) Instruction: ❷ Error in Shadow (Second) Instruction:

→ No problem, the compute error is corrected.

Miscorrection!

(One Bit) (3+ Bits)

→ Correction of compute errors is unsafe.

	Slide 1: SwapCodes: Error Codes for Hardware-Software Cooperative GPU Pipeline Error Detection
	Slide 2: GPUs for High-Reliability Applications
	Slide 3: Storage Error Protection with ECC
	Slide 4: Instruction Duplication
	Slide 5: Instruction Duplication for Pipeline Error Detection
	Slide 6: SwapCodes
	Slide 7: SwapCodes
	Slide 8: SwapCodes Design Principles
	Slide 9: SwapCodes Changes
	Slide 10: Storage Correction
	Slide 11: Storage Correction
	Slide 12: Preserving Storage Correction
	Slide 13: Preserving Storage Correction
	Slide 14: Optimization: Move PRopagation
	Slide 15: Optimization: Swap-Predict
	Slide 16: Swap-Predict (Continued)
	Slide 17: Performance Evaluation
	Slide 18: Performance
	Slide 19: Performance
	Slide 20: Performance
	Slide 21: Performance
	Slide 22: Performance
	Slide 23: Performance
	Slide 24: Resilience
	Slide 25: Conclusion
	Slide 26: Backup
	Slide 27: Pipeline Error Detection Options
	Slide 28: Preserving Storage Correction
	Slide 29: Storage Correction

