SWAPCODES: ERROR CODES FOR HARDWARE-SOFTWARE
COOPERATIVE GPU PIPELINE ERROR DETECTION

Michael B. Sullivan, Siva Kumar Sastry Hari,
Brian Zimmer, Timothy Tsai, Stephen W. Keckler

<A NVIDIA.

GPUS FOR HIGH-RELIABILITY APPLICATIONS

ORNL Summit (World’s Most Powerful Supercomputer) Audi 2018 A8 (World’s First Level-3 Autonomous Car)
NVIDIA Tesla V100 GPUs NVIDIA Tegra K1

WORLD PREMIERE

e B

===

https://www.pcgamer.com/ornls-summit-is-the-most-powerful- https://blogs.nvidia.com/blog/2017/07/11/audi-2018-a8-

supercomputer-in-the-world/ nvidia-barcelona/
2 <4NVIDIA.

STORAGE ERROR PROTECTION WITH ECC

/

I-Cache Register |° .
/v- File Storage ECC Applicable
- =
()
Fetch & :
; ¢ = F i -~ L2 | DRAM
ecode =
&
v Execution 2 — L2 DRAM
Pipelines "_U .
Warp - 8
Sched.
> (XX
l V:\ L
Dispatch Writeback
> L2 DRAM

_\

SMs / On-Core \

Memory Sub-System

Unprotected!

3

NVIDIA.

INSTRUCTION DUPLICATION

(1) Un-Duplicated Code
ADD R1,R1, R2

(2) Intra-Thread Duplication

ADDR1,R1,R2 //orig.
ADD R3, R3, R4 //shad.
ISETP.EQ P1,R1l, R3
@P1 BRA,U "(.L 1) //check
BPT.TRAP 0xl

xplicit checking code before any: i
Loads/Stores :
Branches i

[] [] [] m

Non-deterministic Instructions (e.g. Clock Read)

4 <ANVIDIA.

INSTRUCTION DUPLICATION FOR PIPELINE
ERROR DETECTION

|
|
| Instruction Duplication
I-Cache Register | ,
File Storage ECC Applicable
v 7 €
[}
Fetch & =
De c B |, «— L2 | DRAM
ecode =
&
v Execution 2 - L2 DRAM
Pipelines f .
Warp - 8
Sched.
o [N N]
y v .
Dispatch Writeback
L -—> L2 DRAM
|
Streaming Multiprocessors (SMs) Memory Sub-System

2x RF storage
> 2X instruction bloat
- 49% average slowdown @ 5 GAnvibia

1x RF storage
< 2x instruction bloat
- less slowdown

SWAPCODES

Original Instruction (First)

—

Data 1

ECC2

Shadow Instruction (Second)

Register file error
detection
functions as
normal but can
now
detect pipeline
errors!

6 <NVIDIA.

SWAPCODES

Example: Error in Original Instruction!

“Original Instruction (First)

Data 1 ECC2

Shadow Instruction (Second)

'Error in original instruction: corrupted data bits |
|Error in shadow instruction: corrupted check-bits [

SWAPCODES DESIGN PRINCIPLES

No New Per-Thread State

In a massively-threaded GPU, per-thread state is expensive!

No redundant registers or new microarchitectural buffers.

2. No New Hardware Error Checkers

No new self-checking checkers

3. Full Error Containment

Errors are detected immediately and cannot “leak”

8

NVIDIA.

SWAPCODES CHANGES

TABLE. The Swap-ECC hardware and software changes.

Structure/Program

Swap-ECC Changes

Backend Compiler
Backend Compiler
ISA Meta-Data

Register File

Error Reporting
(Storage Correction)

Add an intra-thread duplication pass.
Swap-ECC-aware scheduling.
Add a 1b data write enable.

Add a data write enable
and muxes for move propagation.

Augmented error reporting
to separate storage from pipeline errors.

Overheads evaluated with synthesis estimates and shown to be small.

9

NVIDIA.

STORAGE CORRECTION

Problem: Error in Shadow (Second) Instruction:

Original Instruction (First)

(3+ Bits)

Data 1

ECC 2

Shadow Instruction (Second)

10 NVIDIA.

STORAGE CORRECTION

Problem: Error in Shadow (Second) Instruction:

Original Instruction (First)
(3+ Bits)

ECC 2

Miscorrection!

Shadow Instruction (Second)

— Compute error correction is unsafe.

11 NVIDIA.

Preserving Storage Correction

“Data Parity Bit” Parity bit JUST for the data.
pr g Generated by the original
Data Input DP\ ECC Check-Bits instruction, not swapped.
vV vV v
Data Segment SEC or SEC-DED
Parity Check Decoder
CE? DUE?
79
DP Mismatch? (MM?) [)—>CE™

12 NVIDIA.

Preserving Storage Correction

“Data Parity Bit” Parity bit JUST for the data.

-
-
-

=3 Generated by the original
Data Input DP\ ECC Check-Bits instruction, not swapped.
v v v ‘ Semantics:
Data Seglllneit SEC or SEC-DED Data parity bit mismatch: the
Parity Chec Decoder single-bit error is a storage error
CE? DUE? and it is allowed.
DP Mismatch? (MM?) |)—>CE™ Data parity bit does not mismatch:

ODD ; the single-bit error is a compute
DUE™ error and it is flagged as a DUE.

Results: Single-Bit Correction, Double-Bit Detection (Storage Errors)
Triple-Bit Detection (Compute Errors)

3 NVIDIA.

OPTIMIZATION: MOVE PROPAGATION

So long as the ECC | REECCRead
check-bits are B —
propagated, then E,Effﬁer

MOV instructions

do not need to be ‘E"Move‘?

duplicated. RF ECC Write

14 NVIDIA.

OPTIMIZATION: SWAP-PREDICT

L

Input RF Data 1 ‘RF ECC 2

vy v v

7

Modified
Encoder

v v

Output RF Datal |RF ECC 2

Operation and ECC-specific
check-bit prediction can avoid
the need to duplicate selected
other operations.

Note: “Predict” as in
Parity Prediction. Not
speculative!

15 NVIDIA.

SWAP-PREDICT (CONTINUED)

L

Input RF Data 1 ‘RF ECC 2

Modified
Encoder

v v

Output RF Datal |RF ECC 2

Difference from Concurrent Checking:
1. Opportunistic! For selected instructions.
2. No new checkers! Reusing RF decoder.

Case Study: Residue codes for GPUs,
with a novel MAC prediction circuits.

16 NVIDIA.

PERFORMANCE EVALUATION

We implement and run each approach on a P100.

Instruction Duplication: Fully functional prototype (verified using error injection and
neutron beam testing).

SwapCodes: Software changes only.

Performance should be representative so long as the modest hardware changes do
not alter the system clock period. (Highly likely.)

Benchmarks: Rodinia 2.3, the DOE miniapp “SNAP”, and MatMul from the CUDA SDK.

200%
150%
100%
50%
0%

Sw-Dup |

Swap-ECC |l
Pre AddSub |

Pre MAD Il

w
Z.
>
g

PERFORMANCE

Legend:

SW-Dup: Instruction Duplication Baseline

A

Pre-AddSub: Swap-Predict for +
Pre-MAD: Swap-Predict for +, x

Swap-ECC: SwapCodes with Move Propagation

18 NVIDIA.

200%
150%
100%
50%
0%

020
Sk
532
n S L
BED-
-
SNAP

x5

PERFORMANCE

€ Swap-ECC Responders:
High overhead with SW-Dup, Swap-ECC brings this to ~0.
Little further benefit from Swap-Predict.

Other Benchmarks: pathfinder, srad_v2, kmeans, needle

19

NVIDIA.

PERFORMANCE

200%
150% :
100% I I I I I I I @ Swap-Predict Responders:
0
580;0 SwapCodes helps.
0 %U —g - %U —g A
A O A < A O A << Benefit progressively more with prediction.
HES THES
c% %qj © = %Qj O Other Benchmarks: b+tree, lud, hotspot, heartwall
= O r = L al
ZFs 2
SNAP bprop
x5 X5

20 NVIDIA.

PERFORMANCE

200%
150% I I I I © Alread
100% I I I I I I I I Already Fine:
50%
0% oLon auen cuoA Even SW-Dup has -0 overhead.
RYAS AYBS ARAS .
Q, M 5 S D. 05 s Q.) =5 S Other Benchmarks: mummer, bfs,
2 AT 2 AT = A MatMul (CUDA SDK)
NnosCE s <l
-y N A
SNAP bprop gauss

x5 x5 x3

21 NVIDIA.

PERFORMANCE

200%
150% O Non-Responders:
100% . .
50% Floating-point compute
0% bound.
* 3080 3080 5880 5050
~ S A Modest i ts.
Q'L?EE Q-Uﬂ%jz QIUIJEZ Q-“.-"Eé)z odest improvements
c% %qj L B %qj © B %<g D 3 %<1: O Other Benchmarks:
EEO- m%go. 0038& maem None
-y oy oy -
SNAP bprop gauss lavaMD
x5 x5 X3 X1

22 NVIDIA.

PERFORMANCE

21%

49%

/
!

16%

15%

N\

D) -demg

50%
0%

200%
150%
100%

AVIN 21d
qnSppy 21d

dn-m S

AVIN 21d
qnSppy 214
DDH-dems
dng-ms

AVIN 21d
qnSppy 21d
DDA-demg
dng-msS

AVIA 21d
qnSppy dld
DDd-dems
dn-msS

AVIN 21d
qnsSppy 921d

DDA-dems
dnq-mg

Mean

gauss lavaMD

x3

bprop

SNAP

x1

x5

x5

23 <ANVIDIA.

SDC Risk Given an Error

6%
4%
2%
0%

FxP AddSub [

FxP Mult ¢

Fp32 Mult
Fp64 AddSub |}

Fp32 AddSub

Mod-3 (2b)

Fp64 Mult [l

FxP AddSub }

FxP Mult
Fp32 AddSub |

RESILIENCE

Using Gate-Level Error Injection Into (Example) Compute Pipelines

Fp32 Mult [

Fp64 AddSub

Mod-127 (7b)

Fp64 Mult

FxP AddSub |

FxP Mult }
Fp32 AddSub |

Fp32 Mult |
Fp64 AddSub |

TED (7b)

Fpo4 Mult [

>98.8% pipeline
errors with a SEC-
DED (TED) code.

>99.3% with an

equal-redundancy
residue code.

24 <ANVIDIA.

CONCLUSION

Reduces the overhead of intra-thread instruction duplication by >50% on average,
despite requiring:

No new per-thread state
No new hardware error checkers
With a standard SEC-DED protected register file, detects >98.8% of pipeline errors.

Swap-Predict can further optimize overheads to achieve just a 16% performance
overhead with check-bit prediction for addition and subtraction.

25 NVIDIA.

BACKUP

PIPELINE ERROR DETECTION OPTIONS

High Level Thread Instruction Concurrent

Duplication Duplication Duplication Checking SwapCodes

Transparent No No Yes Yes Yes
LY None None None Many Few
Changes
Perf. High High Medium—High None—Lo Lo
Overhead 8 8 ceit & W W
Major Nondeteminism Threads Scope &

‘)
Issue & Perf. & Perf. Performance Complexity NELE:

27 <ANVIDIA.

Preserving Storage Correction

“Data Parity Bit”

-
-
-
-

Data Input D;‘

ECC Check-Bits

| ———

\ 20

Y v

Data Segment
Parity Check

SEC or SEC-DED

Decoder

CE?

DP Mismatch? (MM?)

We describe two algorithms:
€ SEC-DED-DP:
Adds a data parity bit to the SEC-DED decoder.

+ No constraints
- Requires a bit of redundancy

@ SEC-DP:

Adds a data parity bit to the SEC decoder, and
uses selective bit placement to achieve DED.

+ No redundancy
- Constrains the RF bit placement

28

NVIDIA.

€ Error in Original (First) Instruction:

Original Instruction (First)

STORAGE CORRECTION

(One Bit) h

Data 1

ECC 2

Shadow Instruction (Second)

— No problem, the compute error is corrected.

@ Error in Shadow (Second) Instruction:

Original Instruction (First)
(3+ Bits)

ECC 2

Miscorrection!

Shadow Instruction (Second)

— Correction of compute errors is unsafe.

29

NVIDIA.

	Slide 1: SwapCodes: Error Codes for Hardware-Software Cooperative GPU Pipeline Error Detection
	Slide 2: GPUs for High-Reliability Applications
	Slide 3: Storage Error Protection with ECC
	Slide 4: Instruction Duplication
	Slide 5: Instruction Duplication for Pipeline Error Detection
	Slide 6: SwapCodes
	Slide 7: SwapCodes
	Slide 8: SwapCodes Design Principles
	Slide 9: SwapCodes Changes
	Slide 10: Storage Correction
	Slide 11: Storage Correction
	Slide 12: Preserving Storage Correction
	Slide 13: Preserving Storage Correction
	Slide 14: Optimization: Move PRopagation
	Slide 15: Optimization: Swap-Predict
	Slide 16: Swap-Predict (Continued)
	Slide 17: Performance Evaluation
	Slide 18: Performance
	Slide 19: Performance
	Slide 20: Performance
	Slide 21: Performance
	Slide 22: Performance
	Slide 23: Performance
	Slide 24: Resilience
	Slide 25: Conclusion
	Slide 26: Backup
	Slide 27: Pipeline Error Detection Options
	Slide 28: Preserving Storage Correction
	Slide 29: Storage Correction

