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GPUS FOR HIGH-RELIABILITY APPLICATIONS

https://www.pcgamer.com/ornls-summit-is-the-most-powerful-
supercomputer-in-the-world/

ORNL Summit (World’s Most Powerful Supercomputer)
NVIDIA Tesla V100 GPUs

https://blogs.nvidia.com/blog/2017/07/11/audi-2018-a8-
nvidia-barcelona/

Audi 2018 A8 (World’s First Level-3 Autonomous Car)
NVIDIA Tegra K1
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STORAGE ERROR PROTECTION WITH ECC
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INSTRUCTION DUPLICATION

Explicit checking code before any:
• Loads/Stores
• Branches
• Non-deterministic Instructions (e.g. Clock Read)
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INSTRUCTION DUPLICATION FOR PIPELINE 
ERROR DETECTION
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Instruction Duplication

Storage ECC Applicable

Streaming Multiprocessors (SMs) Memory Sub-System

I-Cache

2x RF storage
> 2x instruction bloat
→ 49% average slowdown ☹

+ Reliability!
~10x SDC reduction 
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SWAPCODES

Register file error 
detection

functions as 
normal but can 

now 
detect pipeline 

errors! 
1x RF storage
< 2x instruction bloat
→ less slowdown☺
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SWAPCODES
Example: Error in Original Instruction!

Error in original instruction: corrupted data bits
Error in shadow instruction: corrupted check-bits
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SWAPCODES DESIGN PRINCIPLES
Three Key Principles Simplify Implementation

1.

2.

No New Per-Thread State

• In a massively-threaded GPU, per-thread state is expensive!

• No redundant registers or new microarchitectural buffers.

No New Hardware Error Checkers

• No new self-checking checkers      

Full Error Containment

• Errors are detected immediately and cannot “leak”                 

3.
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SWAPCODES CHANGES
Hardware-Software Cooperative with Modest Changes

:

} Software

Hardware

Overheads evaluated with synthesis estimates and shown to be small.



10

STORAGE CORRECTION
Challenge: Just Correcting All Single-Bit Errors is Not Safe!

Problem: Error in Shadow (Second) Instruction:

(3+ Bits)
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STORAGE CORRECTION
Challenge: Just Correcting All Single-Bit Errors is Not Safe!

Problem: Error in Shadow (Second) Instruction:

Miscorrection!

(3+ Bits)

→ Compute error correction is unsafe.



12

Preserving Storage Correction
Allowing Storage Error Correction, Promoting ALL Compute Errors to DUEs 

“Data Parity Bit” Parity bit JUST for the data.

• Generated by the original 
instruction, not swapped.
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Preserving Storage Correction

Parity bit JUST for the data.

• Generated by the original 
instruction, not swapped.

Semantics:

• Data parity bit mismatch: the 
single-bit error is a storage error 
and it is allowed.

• Data parity bit does not mismatch: 
the single-bit error is a compute 
error and it is flagged as a DUE.

Allowing Storage Error Correction, Promoting ALL Compute Errors to DUEs 

“Data Parity Bit”

Results: Single-Bit Correction, Double-Bit Detection (Storage Errors)
Triple-Bit Detection (Compute Errors)
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OPTIMIZATION: MOVE PROPAGATION
Avoiding the Need to Duplicate MOV Instructions

So long as the ECC 

check-bits are 

propagated, then 

MOV instructions 

do not need to be 

duplicated.
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OPTIMIZATION: SWAP-PREDICT
Avoiding the Need to Duplicate Other Instructions (e.g. ±, ×)

Operation and ECC-specific 

check-bit prediction can avoid 

the need to duplicate selected 

other operations. 

Note: “Predict” as in 

Parity Prediction. Not 

speculative! 
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SWAP-PREDICT (CONTINUED)
Avoiding the Need to Duplicate Other Instructions (e.g. ±, ×)

Case Study: Residue codes for GPUs, 

with a novel MAC prediction circuits.

Difference from Concurrent Checking:
1. Opportunistic! For selected instructions.
2. No new checkers! Reusing RF decoder.
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PERFORMANCE EVALUATION

We implement and run each approach on a P100.

Instruction Duplication: Fully functional prototype (verified using error injection and 
neutron beam testing).

SwapCodes: Software changes only.

• Performance should be representative so long as the modest hardware changes do 
not alter the system clock period. (Highly likely.)

Benchmarks: Rodinia 2.3, the DOE miniapp “SNAP”, and MatMul from the CUDA SDK.

Implemented in the Compiler, Run on Silicon



18

PERFORMANCE
Clustering Results into 4 Classes!

Legend:

SW-Dup: Instruction Duplication Baseline
Swap-ECC: SwapCodes with Move Propagation
Pre-AddSub: Swap-Predict for ±
Pre-MAD: Swap-Predict for ±, ×
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PERFORMANCE
Clustering Results into 4 Classes!

❶ Swap-ECC Responders:

High overhead with SW-Dup, Swap-ECC brings this to ~0.

Little further benefit from Swap-Predict.

Other Benchmarks: pathfinder, srad_v2, kmeans, needle

x5
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PERFORMANCE

x5

❷ Swap-Predict Responders:

SwapCodes helps.

Benefit progressively more with prediction.

Other Benchmarks: b+tree, lud, hotspot, heartwall

x5
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PERFORMANCE

x5

❸ Already Fine:

Even SW-Dup has ~0 overhead.

Other Benchmarks: mummer, bfs, 
MatMul (CUDA SDK)

x5 x3
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PERFORMANCE

x5

❹ Non-Responders:

Floating-point compute 
bound.

Modest improvements.

Other Benchmarks: 
None

x3x5 x1
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PERFORMANCE

x5 x1x3x5

49%
21%

16%
15%
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RESILIENCE

>98.8% pipeline 
errors with a SEC-
DED (TED) code.

>99.3% with an 
equal-redundancy 
residue code.

Using Gate-Level Error Injection Into (Example) Compute Pipelines
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CONCLUSION

Reduces the overhead of intra-thread instruction duplication by >50% on average, 
despite requiring:

• No new per-thread state

• No new hardware error checkers

With a standard SEC-DED protected register file, detects >98.8% of pipeline errors.

Swap-Predict can further optimize overheads to achieve just a 16% performance 
overhead with check-bit prediction for addition and subtraction.

SwapCodes: Hardware-Software Acceleration for Instruction Duplication
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BACKUP
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PIPELINE ERROR DETECTION OPTIONS

High Level 
Duplication

Thread 
Duplication

Instruction 
Duplication

Concurrent 
Checking

SwapCodes

Transparent No No Yes Yes Yes

H/W 
Changes

None None None Many Few

Perf.
Overhead

High High Medium—High None—Low Low

Major
Issue

Nondeteminism

& Perf.

Threads

& Perf.
Performance

Scope & 

Complexity
None?
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Preserving Storage Correction

We describe two algorithms:

❶ SEC-DED-DP:

Adds a data parity bit to the SEC-DED decoder.

+ No constraints
- Requires a bit of redundancy

❷ SEC-DP:

Adds a data parity bit to the SEC decoder, and 
uses selective bit placement to achieve DED.

+ No redundancy
- Constrains the RF bit placement 

Two Flavors, Each with SEC-DED Protection Against Storage Errors

“Data Parity Bit”



29

STORAGE CORRECTION
Challenge: Just Correcting All (Apparent) Single-Bit Errors is Not Safe!

❶ Error in Original (First) Instruction: ❷ Error in Shadow (Second) Instruction:

→ No problem, the compute error is corrected.

Miscorrection!

(One Bit) (3+ Bits)

→ Correction of compute errors is unsafe.
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