AN ANALYTICAL MODEL FOR HARDENED LATCH SELECTION AND EXPLORATION

🔍 NVIDIA.

Michael Sullivan, Brian Zimmer, Siva Hari, Timothy Tsai, Stephen W. Keckler

SELSE 2016

CHIP USE AND OVERVIEW

Logic: Low Priority

SRAMs/Latch Arrays/Busses: ECC

Unstructured Flip-Flops: Need Protection

FLIP-FLOP HARDENING

Will always be unstructured flip-flops (ECC ineffective)

Flip-Flop Hardening:

Avoid errors in certain flip-flops

Goal: unobtrusive yet effective way to reach FIT targets

Want to understand how hardening affects system level resiliency

Which flip-flops to harden? How to harden them? The overall impact?

TYPES OF HARDENING

MANY TYPES OF HARDENING

EXAMPLE HARDENED FLIP-FLOP CHOICES

Flip-flop type	Area overhead	Power overhead	FIT reduction
Baseline	1x	1x	1x
Strike suppression technique	1.15x	1.15x	6x
Redundant node	2x	2x	40x
Triple-modular-redundancy (TMR)	3.5x	3.5x	100,000,000x

HARDENING UNCERTAINTY

Validation requires a tape-out and beam testing

Only approximate improvement known before tape-out

Beam testing results have uncertainty---experimental variation and low error counts

Literature evaluations differ

Neutron, proton, heavy ion beams

Clock and input pattern methodology

Temperature, voltage, process corner

Need a transparent model for sensitivity and uncertainty sweeps

ANALYTICAL MODEL Goals

1 Capture the asymmetric sensitivity of flip-flops

- 2 Express differing flip-flop protection levels and costs
- 3 Simplicity and transparency

CHARACTERIZING FLIP-FLOP SENSITIVITY

THE IMPACT OF ASYMMETRIC SENSITIVITY


```
Hardening 20% FFs:
```

Hill 2008 FLP (B = 22.29): 98.8% FIT reduction

Hill 2008 FXP (B = 4.57): 60.5% FIT reduction

Uniform $(\beta \rightarrow 0)$: 20% FIT reduction

DIFFERENT HARDENING LEVELS ($\beta = 15$)

FRACTION OF FLIP-FLOPS THAT NEED BE HARDENED (TMR, $\beta = 15$)

FRACTION OF FLIP-FLOPS THAT NEED BE HARDENED (REDUNDANT NODE, $\beta = 15$)

COST DESIGN SPACE EXPLORATION (B= 15)

COST DESIGN SPACE EXPLORATION

COST DESIGN SPACE EXPLORATION

Combinations of multiple hardening techniques also possible.

MULTIPLE HARDENING EXAMPLE ($\beta = 5$)

A: 8x reduction, 3.5x overhead B: 4x reduction, 2.5x overhead

C: 2x reduction, 1.5x overhead

 \rightarrow More efficient overall solution

 \rightarrow More control over uncertainty

MULTI-DESIGN SPACE EXPLORATION (B = 15)

CONCLUSION

Some hardening of unstructured flip-flops is needed in the future

Not all flip-flops need be hardened—sensitivity is asymmetric

General: select the least costly design that hits the FIT target with a healthy margin Multi-hardening promising:

A rich design effort vs efficiency tradeoff space

A possible way to control uncertainty