
Long Residue Checking for Adders
Michael Sullivan and Earl E. Swartzlander, Jr.

The University of Texas at Austin

Introduction

Error-free addition is important.

I Addition is heavily utilized for data
manipulation, memory addressing, and
control flow throughout the system.

I Errors can manifest in many ways,
ranging from silent data corruption to
catastrophic system failure.

Despite this, dynamic error detection in
adders remains relatively expensive. We
propose a novel separable error detection
mechanism that provides strong, low
latency error detection for a single fast
adder at less cost than any other
separable design.

Long Residue Checking

We investigate a modified residue checker
which checks for cancellation.

Traditional Residue Checking∣∣ |a|A + |b|A
∣∣
A

= |c|A
Modified Residue Checking∣∣ |a|A + |b|A − |c|A

∣∣
A

= 0

The modified checker with the largest
possible residue width (a = n) is the:
I least complex
I most power efficient
I has the highest error coverage
I has the lowest latency

.We call this checking algorithm the Long
Residue Checker (LRC). The LRC can
detect a fault in any single component,
providing complete coverage against single
event upsets (SEUs).

Long Residue Checking (cont.)

Mod
Gen

Main
+

Checker

A

B

Error?

Mod

Output

+

(a) Residue Checking

Main
Adder

A

B

Output

Error?Checker
N

FAs

Neg

2N
{S, C}

(b) Long Residue Checking (a = n)

Prior Work

The LRC shares
similarities with the
lazy error checker.

I Bit-sliced design
I Similar error

coverage

A B Sum

Cin

Cout

10

Err

(c) Lazy Checker

FA

A B CI

SCO

A B
Sum

CinCout

Err

(d) LRC

LRC Benefits

Only standard cells:

1. FA cell leads to benefits
I ∼10% less area
I ∼20% less power

2. Simplified design
I Just a CSA/checker!

Evaluation

Separable detection mechanisms.

Design Latency

Lazy Checker
1 cycleDMR (Serial)

DMR (Sklansky)
Residue Checking {2,3,4} cycles

LRC vs. Residue Checking

Residue Width (bits)

N
or

m
al

iz
ed

 w
.r.

t.
Lo

ng
 R

es
id

ue
 C

he
ck

in
g

1.0

1.2

1.4

1.6

1.8

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

● ●
●

●

●

●

2 4 8 16 32

Metric
●● Area
●● Power

Design
Optimized
Traditional

Lazy Checker
Word Width Area (%) Power (%)

16 36 48
32 9 24
64 10 23
48 10 25

Duplication (Serial Prefix)
Word Width Area (%) Power (%)

16 65 28
32 92 37
64 97 41
48 100 38

Duplication (Sklansky)
Word Width Area (%) Power (%)

16 193 111
32 205 98
64 186 59
48 188 48

Methodology

Pareto-efficient 16-bit adder designs. The
highlighted baseline minimizes the ED2 metric.

Delay, ns

E
ne

rg
y,

 p
J/

op

0.40

0.45

0.50

0.55

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●●●
●

●

●

●

●
●

●

●

0.4 0.5 0.6 0.7 0.8 0.9

All selected baselines.

Adder Width Delay (ns) Area (µm2) Power (mW)

16 0.42 381.35 0.657
32 0.55 848.79 1.133
64 0.67 1546.06 1.616

128 0.7 3247.85 3.161

The overhead of long residue checking.

Adder Width % Area Overhead % Energy Overhead

16 38 69
32 33 70
64 36 84

128 34 86

Key Findings

Savings over the state-of-the-art.
I ∼10% area and ∼25% power

Simple, modular design.
I Bit-sliced design
I Maximum fanout of 1
I Perfect for standard cell synthesis

Further optimizations possible.
Some standard cells (e.g. D flip-flops)
offer dual rail outputs with little additional
complexity or power usage.
I Further ∼7% area, ∼12% power savings

Mail: mbsullivan@utexas.edu Web: http://webspace.utexas.edu/mbs954

