Hybrid Residue Generators for Increased

Introduction

Low-cost, single-cycle residue generators can be readily formed
out of two's complement adders in two ways, which have area and
delay tradeoffs. A residue generator using adder-incrementers for
end-around-carry adders is small but slow, and a design using
carry-select adders is fast, but large. It is shown that a hybrid
combination of both approaches is more efficient than either.

Low-Cost Residue Codes

The low-cost residue code of a number number, X, (|X|,._;) can
be generated by the addition of non-overlapping a-bit slices of X
under modulo-a arithmetic. This can be implmented as a tree of
end-around-carry (EAC) adders, each of which performs a-bit,
modulo-a addition.

Result

1 = |214|, using a tree of EAC adders.

End-Around Carry Adders

EAC adders can be made out of commodity 2's complement parts
in several ways, which have area, power and delay tradeoffs.

Result
(b) Add-Increment (Small)

Result
(a) Carry-Select (Fast)

Two EAC designs using two's complement adders.

The University of Texas at Austin

Efficiency

Michael B. Sullivan, Earl E. Swartzlander, Jr.
University of Texas at Austin, Austin, TX.

Hybrid Residue Generation

The hybrid residue generator (HRG) is a low-cost residue
generator that can combine multiple architecturally distinct EAC
adders in order to increase the total implementation efficiency.

An HRG; Small adders (S) are used to increase
efficiency, while the fast adder (F) preserves timing.

This HRG is appropriate for a design where a “small” residue
generator tree cannot quite satisfy the timing constraints.

Behavior

Intellegent HRG formation tends to increase efficiency, particularly
in regions where neither constituent adder design dominates. In
some cases, the HRG can increase decrease the critical speed of
operation (given synthesis area limits).

Adder Type
-©-| Hybrid
-4 Small
+| Fast

[[[[[[[[[[[[
1.2 1.4 1.6 1.8 2.0 2.2 2.4 1.2 1.4 1.6 1.8 2.0
Delay, ns Delay, ns

(a) 64-bit (a = 4) (b) 128-bit (a = 2)

HRG behavior across different word lengths and moduli.

Evaluation Details

HRG efficiency improvements are investigated across a spectrum
of word sizes, modulo widths, and delay budgets using gate-level
area and power estimates. The Synopsys toolchain (area
optimized, high mapping effort), DesignWare IP parallel prefix
adder, and 45nm Nangate Open Cell Library are used.

Mean AT and AT? HRG savings.

16-bit

VS

~ast

vs. Slow

Mod Width (a)

AT

AT?

AT

AT?

2

-0.151

-0.157

-0.096

-0.142

4

-0.098

-0.226

-0.034

-0.010

32-bit

VS

~ast

vs. Slow

Mod Width (a)

AT

AT?

AT

AT?

2

-0.098

-0.143

-0.097

-0.024

4

-0.091

-0.213

-0.038

-0.011

8

-0.153

-0.239

-0.012

-0.017

04-bit

VS.

-ast

vs. Slow

Mod Width (a)

AT

AT?

AT

AT?

2

-0.113

-0.117

-0.126

-0.110

A

-0.105

-0.209

-0.048

-0.033

8

-0.154

-0.179

-0.005

-0.021

16

-0.216

-0.338

-0.002

-0.009

128-

DIt

VS.

~ast

vs. Slow

Mod Width (a)

AT

AT?

AT

AT?

2

-0.035

-0.247

-0.245

4

-0.195

-0.046

-0.025

8

-0.214

-0.023

-0.034

16

-0.360

-0.003

-0.002

32

-0.388

-0.008

-0.017

Energy Savings

The HRG has energy benefits, as well. Combined metrics (EDA)
can be optimized, even with conicting area and energy trends.

Energy/op, pJ

4.5 +

w
o1

w
o
|

[[[[[[[
1.2 1.4 1.6 1.8 2.0 2.2 2.4
Delay, ns

(a) 64-bit (a = 4)

Energy/op, pJ

foe) o
o

Adder Type

o

e

=a

[[
1.2 1.4

1.6
Delay, ns

[
1.8

(b) 128-bit (a = 2)

Hybrid
Small
Fast

Energy savings consistent with area improvements.

Mail: mbsullivan@mail.utexas.edu

