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Abstract—In this paper we discuss a GPU implementation
of a hybrid deterministic/Monte Carlo method for the solution
of the neutron transport equation. The key feature is using
GPUs to perform a Monte Carlo transport sweep as part
of the evaluation of the nonlinear residual and Jacobian-
vector product. We describe the algorithm and present some
preliminary numerical results which illustrate the effectiveness
of the GPU Monte Carlo sweeps.

Keywords-Neutron Transport, Jacobian-Free Newton-Krylov,
GPU, Monte Carlo

I. INTRODUCTION

In a recent paper [1] we considered a Jacobian-Free-

Newton-Krylov (JFNK) solver for the Nonliner Diffusion

Acceleration (NDA) formulation of the neutron transport

equation using a hybrid deterministic/Monte Carlo approach

for evaluation of the nonlinear residual. In certain reactor

calculations it may be highly preferable to solve the neutron

transport equation using Monte Carlo methods [2]. Monte

Carlo methods allow for a continuous treatment of space,

angle and energy, removing discretization errors. Monte

Carlo methods allow for us to simulate the exact physics

using known probability distributions and continuous cross-

section data. Furthermore, Monte Carlo methods allow us

to treat complex geometries exactly. In addition, recent

advances in computing allow us to exploit the massively

parallel nature of the Monte Carlo simulation. In this paper

we show how the Monte Carlo (MC) computations can be

efficiently implemented on a GPU.

A. The Neutron Transport Equation

We consider the steady-state, mono-energetic, neutron

transport equation in one space dimension with anisotropic

scattering in a homogeneous medium [2]–[4]

μ
∂ψ

∂x
(x, μ) +Σtψ(x, μ) =

Σs

2

∫ 1

−1

ψ(x, μ′) dμ′ + q(x)/2,
(1)

for 0 < x < τ and μ ∈ [−1, 0)∪(0, 1]. We impose boundary

conditions

ψ(0, μ) = ψl(μ), μ > 0;ψ(τ, μ) = ψr(μ), μ < 0. (2)

In (1)

• ψ is intensity of radiation or angular flux at point x at

angle cos−1(μ)
• τ <∞,

• Σs ∈ C([0, τ ]) is the scattering cross section at x,

• Σt ∈ C([0, τ ]) is the total cross section at x,

• ψl and ψr are incoming fluxes at the boundaries, and

• q ∈ C([0, τ ]) is the fixed source

The quantity of interest is the scalar flux

φ(x) =
∫ 1

−1

ψ(x, μ′) dμ′. (3)

One way to solve for φ is a linear fixed point approach called

source iteration. Here one updates an approximation φc to φ
by solving the one parameter family of ordinary differential

equations

μ
∂ψc

∂x
(x, μ) + Σtψc(x, μ) = S(x) ≡ Σs

2
φc(x) + q(x)/2

(4)

by integrating forwards with initial data ψl for μ > 0 and

integrating backwards with final data ψr for μ < 0. One
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obtains a solution ψc and new approximation to the flux is

φ+(x) =
∫ 1

−1

ψc(x, μ′) dμ′.

The fixed point formulation is φc = φ+. One can express

this as a compact fixed point problem

φ−Kφ = g

and solve it with, say, a Krylov iterative method [5] rather

than simple successive substitution. The Krylov approach

performs much better, as do multilevel methods [6], [7].

Another approach is to reformulate the equation as a

nonlinear problem for the flux [8]–[13]. We will describe the

method in terms of nonlinear diffusion acceleration (NDA)

[8], [9]. In this method one converts the fixed point problem

for φ into a “low-order” nonlinear diffusion equation. The

low-order equation is coupled to the “high-order” transport

equation to make enforce consistency.

Evaluation of the nonlinear residual, given a low-order

flux φLO, begins with solving (4) with φ = φLO subject to

the original boundary conditions (2). From ψ compute the

high-order flux φHO and current JHO from

φHO(x) =
∫ 1

−1

ψ(x, μ′) dμ′.

and

JHO(x) =
∫ 1

−1

μ′ψ(x, μ′) dμ′.

Define

D̂ =
JHO + 1

3Σt

dφHO

dx

φHO
.

We have solved the problem if φLO is the solution of the

diffusion equation

F (φ) = d
dx

[
−1
3Σt

dφ
dx

]
+ (1− c)φ

+ d
dx

[
D̂(φHO, JHO)φ

]
= 0,

(5)

with appropriate boundary conditions.

The numerical results in [1] and in § III of this paper use

the standard second-order finite difference discretization of

(5). The fully deterministic approach from [1], [8] used a

diamond-difference SN [2] discretization for (4). We will

not go into details of the discetizations in this paper.

We will briefly discuss solvers here and refer the reader

to [5], [14], [15] for the details on Newton-Krylov nonlinear

solvers. Recall that Newton’s method for a nonlinear equa-

tion F (φ) = 0 updates a current approximate solution φc to

a new one φ+ by adding the Newton step

φ+ = φc + s

where s is the solution of

F ′(φ)s = −F (φ) (6)

and F ′ is the Jacobian (finite dimensions) or the Fréchet

derivative (infinite dimension). In a Jacobian-Free Newton-

Krylov solver, one solves (6), the linear equation for the

Newton step, with a preconditioned Krylov method.

In [1] we describe a preconditioned JFNK approach for

solving (5). In that paper, solving (4) was the dominant cost

of the computation. The Jacobian-vector product one needs

in the GMRES iteration for the Newton step may be done

with a forward difference

F ′(φ)v ≈ F (φ+ hv)− F (φ)
h

with an appropriate choice of difference increment h [5]

or, as we did in [1] an analytic Jacobian-vector product,

assuming that product can be evaluated in an efficient way.

For the algorithm considered here, evaluation of an analytic

Jacobian-vector product F ′(φ)v is a simple application of

the chain rule and the solution of (4) with Σsv/2 as the

right side. Our approach solves (4) and recovers fluxes

and currents with a MC computation. In this way both the

nonlinear residual and Jacobian-vector product can be done

with MC.

B. Monte-Carlo

In recent years it has become increasingly popular to

approximate the solution the neutron transport equation

using stochastic methods. In order to make these stochastic

calculations more efficient, we would like to create hybrid

algorithms that utilize accelerators such as NDA [1], [8] or

Quasi-Diffusion [8], [13], which were originally developed

for deterministic methods. We will use MC simulation to

approximate the scalar flux, current and Eddington tensor.

MC simulations use random number generation to sample

probability distributions that describe likelihoods for physi-

cal events. By simply considering the physical process we’re

trying to model we can write a MC algorithm that will

approximate these desired physical quantities.

For every neutron in the system which we are modeling,

we must track its location and direction. If we isolate a single

neutron, we can describe its “particle history” in very simple

terms:

1) The particle is “born” at some location in the medium.

The probability of being born in any given location is

dependent on the fixed source, the scattering source,

and, in general, the fission source. We’ll only concern

ourselves with the fixed and scattering sources in this

application.

2) The particle travels in some straight-line direction

away from its starting location until it undergoes an

interaction (“collision”) within the medium or it leaves

the medium. It is important to note that neutrons

interact only with the medium, not other neutrons.

This makes each particle history independent of one

another.
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3) At the point of a collision, one of two things may

occur. The neutron may be absorbed by the medium

and this concludes the particle history. Also, the neu-

tron may scatter off the material at the location of

interaction. In this case, the particle will assume a new

direction and continue along its particle history. If the

particle scatters, we return to Step (2) and continue.

Once all of the particle histories have been observed, we

can tally the physical quantities in which we are interested.

We consider both face tallies and track-length tallies. With

face tallies, a particle contributes to the overall tally each

time it cross the face of a cell. In this case, when a particle

crosses a face, we add a small contribution based on its

relative weight factor to the tally. In a particle does not cross

any cell faces, the particle does not contribute to the tally

statistics.

With track-length tallies, every particle will offer some

contribution to the over tallies. In this case, a particle gives

a contribution to the overall tally in every cell which it

travels. In this case, the contribution to a given cell is based

on the distance the particle traveled within that cell times

the particle’s relative weight factor. Track-length tallies are

generally preferable because they give a more “continuous”

tally and each particle gives us some information that helps

shape the overall physical quantities.

Within every algorithm for solving the neutron transport

equation, we must compute one or more transport sweeps,

that is solve (4) for ψc and then compute fluxes and currents.

This same idea can be used to build a MC transport

sweep (i.e. compute the action of a transport sweep using

a MC simulation). Just as we do for the deterministic

case, we build a fixed source term for (4) and ask the

MC simulation to solve a scattering-free problem. This

amounts to simulating particle flights in which all particles

are absorbed at the point of their first interaction (collision

within the medium).

In this case, our MC algorithm simplifies dramatically.

We have removed the need to loop through the simulation

process within each particle history and all logic has been

removed from the particle simulation process. The new,

simplified algorithm for simulating a single particle history

results:

1) Determine a starting location for the particle and a

starting weight based on the source term S(x).
2) Use random number generation to compute a direction

for the particle to travel.

3) Use random number generation to compute a distance

for the particle to travel.

After the particle travels the pre-determined distance, it

undergoes a collision within the medium and is absorbed.

This concludes the particle history, and there is no need to

test whether or not the particle has been absorbed or whether

or not the particle has left the medium (however, this will

need to be handled during the tallying phase). All logic has

been eliminated from the simulation. It is important to note

that tallying has been greatly simplified as well. Instead of

being forced to tally fluxes, currents and Eddington tensors

between every interaction, we must only tallying along one

flight per particle.

II. HYBRID NDA WITH GPUS

The final part of the algorithm is the use of GPUs to

perform the Monte-Carlo transport sweep with NDA, i. e.
accumulate fluxes and currents from (4). If we consider the

MC transport sweep, we realize that there is a significant

potential for parallelism. Since each particle history is in-

dependent within the MC transport sweep routine, we can

simulate each of these particles in parallel. It is important

to remember that particles only interact with the medium,

not each other. GPUs allow us to take advantage of massive

thread-level parallelism in accelerating this process.

Furthermore, if we consider the mathematics required

to simulate a particle history, the operations required are

simple. We generate three to four random numbers and

perform additions, multiplications and some division. These

simple operations are well-suited for a GPU implementation

of the algorithm. GPUs excel when they’re asked to perform

a large volume of simple, parallel computations in which

memory storage is low. In addition, by removing all (or

most) of the logical checks within the algorithm, we’ve made

the routine more GPU-friendly.

Given the choice of N particle histories per function

evaluation and Nx spatial cells for binning the scalar flux,

current and Eddington tensor, our storage cost is O(4N +
3Nx). It is important to recall that N � Nx. This can

be broken down into storage for the simulation phase and

the tallying phase. During the simulation phase, we must

store a particle weight, starting location, ending location and

direction for each particle (four vectors of length N ). During

the tallying phase, we reduce the data from the simulation

into a scalar flux, current and Eddington tensor (three vectors

of length Nx or Nx + 1). Since N can be quite large, we

may simulate only a subset (or batch) of particles before

performing a partial tally. If we choose to use b batches, our

storage cost may be reduced to O( 4N
b + 3Nx).

We have also investigated using the GPUs for particle

simulation only, and letting the CPU execute the tallying

phase. In this case, storage becomes less of a concern. Here,

as particle histories are generated, the data is periodically

sent from the GPU to the CPU for tallying. Using this

method, we incur a communication expense, but it allows

us to better use our resources if CPU(s) are available. One

further option is to perform a partial tally on the GPU and

send these partial tallies to the CPU where they are collected

and a final tally is computed. This option has the advantage

that the storage requirements are still low for the GPU, yet

communication costs have been reduced. In this case, we
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are only required to send three vectors of length Nx from

the GPU to the CPU.

A. Algorithmic Description

The formal description of the algorithm is below. We

express the use of MC in both the evaluation of the nonlinear

residual F and the Jacobian-vector product J by making

the number of particles NMC and explicit argument. Hence

F (φ,NMC) will denote the approximation of F (φ) with

NMC particles and J(φ, d,NMC) will be the Jacobian

vector product F ′(φ)d using MC with NMC particles.

Newton-GMRES-MC
Evaluate RMC = F (φ,NMC); τ ← τr‖RMC‖+ τa.

while ‖RMC‖ > τ do
Use GMRES with a limit of Imax iterations to find d
such that ‖J(φ, d,NMC) +RMC‖ ≤ η‖RMC‖
if the GMRES iteration fails then
NMC ← 100 ∗NMC

Evaluate RMC = F (φ,NMC)
else
λ = 1
Evaluate RTrial = F (φ+ λd,NMC)
while ‖RTrial‖ > (1 − αλ)‖RMC‖ and λ ≥ λmin

do
λ← λ/2
Evaluate RTrial = F (φ+ λd,NMC)

end while
if λ ≥ λmin then
φ← φ+ λd
RMC = RTrial

else
NMC ← 100 ∗NMC

Evaluate RMC = F (φ,NMC)
end if

end if
end while

III. COMPUTATIONAL RESULTS

In this section we report timings for a transport sweep.

The hardware configuration was an Nvidia Tesla c2075 GPU

and an Intel(R) Core(TM) i5-2400 CPU with 8GB RAM.

In Table I we tabulate the number of particles, the average

time for a transport sweep, and the ratios of the timings from

one suite of particles to the next. The table shows that the

timings scale very well with the number of particles.

Table I
TRANSPORT SWEEP TIMINGS

Particles (Millions) Time (ms) Ratio
0.03 0.7
0.10 1.3 2.0
1.00 8.8 6.6

10.00 85.8 9.8
20.00 167.4 2.0

IV. CONCLUSION

In this paper we describe a Jacobian-free Newton-Krylov

solver for the NDA formulation of the neutron transport

equation. The novel feature in this paper is the use of a GPU

to solve the low-order problem. We discuss the algorithm,

the GPU implementation of the MC transport sweep, and

present computational results.
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