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Abstract—GPUs have found wide acceptance in domains such
as high-performance computing and autonomous vehicles, which
require fast processing of large amounts of data along with
provisions for reliability, availability, and safety. A key component
of these dependability characteristics is the propagation of errors
and their eventual effect on system outputs. In addition to
analytical and simulation models, fault injection is an important
technique that can evaluate the effect of errors on a complete
computing system running the full software stack. However, the
complexity of modern GPU systems and workloads challenges
existing fault injection tools. Some tools require the recom-
pilation of source code that may not be available, struggle
to handle dynamic libraries, lack support for modern GPUs,
or add unacceptable performance overheads. We introduce the
NVBitFI tool for fault injection into GPU programs. In contrast
with existing tools, NVBitFI performs instrumentation of code
dynamically and selectively to instrument the minimal set of
target dynamic kernels; as it requires no access to source code,
NVBitFI provides improvements in performance and usability.
The NVBitFI tool is publicly available for download and use at
https://github.com/NVlabs/nvbitfi.

Keywords-Fault injection, GPU, dynamic instrumentation, er-
ror propagation

I. INTRODUCTION

Complex computing systems increasingly use GPUs due
to their high performance and power efficiency. General-
purpose computing with GPUs has been used with large-scale
machines and high-performance computing (HPC) for over a
decade; this trend looks likely to continue as a majority of
the ten fastest and most efficient supercomputers in the world
currently use GPUs [1], [2]. Another trend that has accelerated
the use of GPUs is the advent of deep neural networks
(DNNs) with implementations that are readily amenable to the
massive parallelism available in GPUs. While many of these
DNN installations are located in data centers, DNNs are also
finding widespread adoption in safety-critical systems such as
autonomous vehicles (AV) for processing data from cameras
and other sensors.

Both HPC and safety-critical systems have dependability re-
quirements, albeit in different ways. An HPC system presents
a large state-time space for faults to occur: a large system
size contains many potentially faulty components, and the
relatively long run-time of HPC applications allows faults
over a large time period to potentially affect outputs. For
an HPC system, both reliability (are the results correct?) and
availability (are results produced?) are important. In contrast,
AV systems (an example of a safety-critical system) are em-
bedded control systems that continuously process a stream of
incoming telemetry from cameras, radars, LiDARs, GPS, and

other sensors to accurately perceive the environment around
the vehicle. While the state-time space for an AV system is
smaller due to less computing hardware and lower run-time
(at least in terms of processing a single set of telemetry), the
safety requirements for AV systems are very stringent because
of the potential for loss of life or significant property damage.
As a result, AV computing systems generally have backup
modes of operation even in the event of catastrophic failure
(e.g., power or clock signal failures). However, undetected
errors may fail to trigger the backup mode and instead result
in silent data corruption (SDC) that leads to erroneous vehicle
behavior and accidents.

Although faults can occur in the CPU, GPU, memory,
storage, network, power supplies, and other components of
a computing system, this paper focuses on faults that occur
in GPUs. For these GPU-based systems, much of the com-
putation and live state is in the GPUs, and thus much of the
opportunity to affect live state is in the GPU. However, most of
these GPU faults do not propagate to affect the outputs of the
program. For example, faults may flip values in non-live bits
that are never read after the corruption, or the erroneous values
may be not be mathematically significant to the computation
of the final program outputs.

Estimation of the probability that a fault will affect program
outputs is needed to understand the expected failure rate of
a system and its components. The architectural vulnerability
factor (AVF) [3] is the probability that a fault will result in a
visible error in the final output of a program. The product of
the raw error rate and the AVF results in the visible error rate
for the program on a particular system. The AVF is affected
by both the control and data flow of the program as well as the
design of the underlying hardware. As a result, estimating the
AVF requires understanding a specific program as it executes
on a specific hardware processor.

Several techniques exist for estimating the error propagation
of a GPU-based computing system. Section II provides an
overview of these techniques and the related published litera-
ture. Some of the AVF estimation techniques use models that
simulate a microarchitectural representation of the GPU and
inject faults into the simulation model to estimate AVF. Other
techniques perform architectural fault injection by injecting
errors into physical GPUs.

This paper presents a new tool called NVBitFI that instru-
ments a target program to inject errors into NVIDIA GPUs.
In contrast to existing tools, NVBitFI offers the following key
advantages:

• Binary instrumentation. NVBitFI instruments the SASS



TABLE I
PHYSICAL-GPU FAULT INJECTION TOOLS.

Year Tool Injection mechanism Fault model level Needs source code? Inject libraries?
2020 NVBitFI NVBit SASS No Yes
2017 SASSIFI [4] SASSI SASS Yes No
2016 LLFI-GPU [5] LLVM LLVM IR Yes No
2014 GPU-Qin [6] cuda-gdb SASS No Maybe
2011 Hauberk [7] source code C++ Yes No

[8] code that represents the lowest level GPU assembly
code, which allows NVBitFI to perform instrumentation
without the need for source code.

• Dynamic instrumentation. NVBitFI intercepts dynamic
GPU kernel calls, which allows it to target dynamically
loaded libraries, including libraries that are not known at
build time. The instrumentation is limited to the minimal
set needed for error injection, thus limiting the total
performance overhead of the instrumentation code.

• Architectural abstraction. NVBitFI presents a single
interface that works on all recent NVIDIA architecture
families including Kepler, Maxwell, Pascal, Volta, and
Ampere GPUs.

NVBitFI is a module built using the NVBit dynamic bi-
nary instrumentation framework [9]. NVBit and the NVBitFI
architecture, injection mechanisms, supported fault models,
and usage are described in Section III. We present examples
of usage for NVBitFI using the SpecACCEL benchmark in
Section IV, including showing how different tool options affect
AVF results and performance overhead. Section V discusses
future work and ideas. The NVBitFI tool is available for down-
load at https://github.com/NVlabs/nvbitfi.

II. RELATED WORK

Hardware injection through program transformation.
Program transformation tools inject faults into a program
running on a physical GPU by instrumenting the target GPU
program. This instrumentation injects errors by corrupting
the architecturally visible program state, such as register or
memory values. The injected error then propagates at hardware
speeds as the instrumented program executes on the GPU.
While this paper focuses on CUDA-programmable GPUs, the
same concepts are applicable to other GPUs. Table I lists
several program transformation tools and summarizes the fault
injection mechanism for each one.

Hauberk [7] uses direct modification of C++ source code to
introduce injection code. Because C++ code must be translated
into GPU assembly code, the ultimate GPU state corruption
depends on how the compiler translates both the original
program code and the injection code. LLFI-GPU [5] inserts
injection code into the LLVM intermediate representation (an
IR that is closer to the underlying hardware architecture),
which is then compiled into PTX [10] and then the SASS [8]
GPU assembly code.

Several tools inject errors directly into the GPU assembly
code (SASS), which is closest to the hardware and is not
subject to compiler scheduling variations. SASSIFI [4] is a
compiler framework based on the SASSI [11] framework that

inserts error injection code as a part of the final compiler pass
that generates the SASS code. GPU-Qin [6] is a debugger-
based tool that uses cuda-gdb [12] to set breakpoints at which
error are injected using debugger commands. Our NVBitFI
tool is similar to SASSIFI and GPU-Qin as they all operate
on the SASS level. The key difference is that NVBitFI uses
the NVBit [9] framework to perform dynamic code instrumen-
tation that intercepts dynamic kernel calls and inserts error
injection code on the fly (1) without requiring any source
code or recompilation and (2) without affecting any instruction
scheduling or register allocation of the target program.

Simulator-based injection. Simulation-based tools may be
based on microarchitectural, RTL, netlist, or circuit models.
Because simulation-based models have a trade-off between
fidelity and simulation speed, most tools in the published
literature are based on microarchitectural models, although
proprietary tools based on lower-level representations may
exist. Several GPU families are represented by prior tools,
including SIFI [13] based on the AMD Southern Islands
family using Multi2Sim v4.2 [14], GUFI [15] and GPGPU-
SODA [16] based on NVIDIA CUDA [17] GPUs both using
GPGPU-Sim [18], and tools based on AMD APUs [19], [20]
using gem5 [21]. Because these tools are based on openly
available simulators, they cannot truly represent the behav-
ior of a commercial GPU. While simulator-based injection
tools can capture the effects of specific microarchitecture
errors, they are also several orders of magnitude slower than
hardware-based injection frameworks, limiting them to small
programs or program fragments.

Discussion. The key advantages of NVBitFI are due to
dynamic instrumentation of program binaries and the use
of a generalized GPU architecture abstraction. Binary in-
strumentation allows targeting of programs without requiring
source code and can instrument static or dynamically loaded
libraries. NVBitFI can also inject errors into dynamically
selected basic blocks or kernels, eliminating instrumentation
overhead in the rest of the program. Although SASS is the
name for the NVIDIA GPU instruction set architecture (ISA),
SASS instructions and their encodings can change across GPU
generations. NVBitFI leverages the architectural abstraction
offered by NVBit to handle all recent NVIDIA GPU families,
from Kepler to Ampere. Finally, NVBitFI runs at GPU speeds,
meaning error injection campaigns are performed at rates of
billions of instructions per second.

III. NVBITFI ARCHITECTURE AND DESCRIPTION

NVBitFI is a program transformation fault injection tool
that offers ease of use, low overhead, and the ability to target



Target program profile:
One line per dynamic kernel showing: 
ID for the dynamic kernel
kernel name
instruction counts per opcode

Example:
index: 0
kernel_name: cpu_stencil_15_gpu
FADD: 88725720, FADD32I: 0, …

Step 1:  Generate target program profile
LD_PRELOAD=profiler.so target_program

Step 2:  Select single-injection parameters

nvbitfi-injection-info.txt:
7                                   # Instruction group
0                                         # Bit-flip model
cpu_stencil_15_gpu                     # Kernel
1                                # Target kernel count
893722225      # Target instruction count
0.602052984996       # Register selection
0.237695214247  # Bit-pattern selection

Step 3:  Inject fault
LD_PRELOAD=injector.so target_program

nvbitfi-injection-log-temp.txt:
kernel name
target kernel count
number of static and dynamic 
instructions
bit error XOR mask
register before and after values
register name
Opcode
instruction address
thread id

Step 4:  Analyze target program output
sdc_check.sh

Outcome determination

SDC DUE Masked

Fig. 1. Injection procedure for a single fault showing profiling and injection
commands along with parameter and output files.

dynamic libraries and other software for which source code
is not available. These qualities are due in large part to the
NVBit framework. In this section, we describe (1) the NVBitFI
software architecture, (2) the supported fault models, and
(3) the parts of the NVBit framework that are pertinent to
NVBitFI. NVBitFI supports both transient and permanent fault
models.

A. NVBitFI Software Architecture

The NVBitFI package consists of two types of tools,
profilers and injectors, which are implemented as dynamic
libraries that are attached to a target program. Profilers analyze
a target program to build a profile of dynamic instruction
counts for every opcode in every kernel. The instruction profile
represents the uniform distribution of dynamic faults from
which a random set of faults can be selected. Injectors use the
profile for a given program to inject faults into that program.
Figure 1 shows the steps used to inject a transient fault
including (1) generating a program profile to determine the
set of eligible injection points, (2) selection of one or more
injection points for a particular experiment, (3) injecting the
fault(s) by modifying the program binary, and (4) running the
modified program and comparing to a golden output state to
determine if an error propagated to the program output.

The most basic mode of usage of NVBitFI consists of
attaching either a profiler or an injector library to the target
program via the LD_PRELOAD environment variable. For ex-
ample, attaching the profiler library to the target_program

is performed in the bash shell with the following command:
LD_PRELOAD=<path>/profiler.so target_program

Profiler. The profiler is deployed in a profiler.so library.
To prepare for the injection campaign, the profiler creates a

profile containing one line for every dynamic kernel and the
total dynamic instruction counts for every opcode in every
thread in that dynamic kernel (Figure 1, step 1). Instruc-
tions that are not executed based on a predicate register are
not included in the profile. A dynamic instruction will be
selected from the set of executed instructions by choosing
a random number n from the set 1..N , where N is the
total number of profiled dynamic instructions (Figure 1, step
2). This nth instruction is then translated into a tuple of
<kernel name, kernel count, instruction count> values that
instructs the transient fault injector to inject an error for
the indicated dynamic instruction. When that instruction is
reached, the injection code will corrupt the destination register
of the instruction based on the bit-pattern selection value. The
NVBitFI package includes convenience scripts to automate the
profiling and fault selection process.

Because the profiling process requires the instrumentation of
every dynamic instruction, it can take a lot of time. To address
this issue, NVBitFI offers two types of profiling, exact and
approximate. Exact profiling counts every dynamic instruction.
Approximate profiling only counts the dynamic instructions in
the first instance of every static kernel and assumes that the
instruction counts for subsequent instances of the same static
kernel are the same. In Section IV, we compare the results
and overheads for these two types of profiling.

A permanent fault injection campaign does not require an
instruction profile for a target program. However, a profile
increases efficiency by only injecting instructions that are
known to be executed for that program. The set of executed
opcodes consists of all opcodes from the profile with a non-
zero dynamic instruction count.

Injector. The injector is deployed in an injector.so

library for transient faults and a pf_injector.so library for
permanent faults. The transient fault injector injects a fault
for a single dynamic instruction, whereas the permanent fault
injector corrupts all instances of a specified opcode.

B. Fault Models

Transient fault model. The main fault model supported
by NVBitFI is a transient fault that occurs in the GPU
compute pipeline or memory read subsystem. Table II shows
the parameters for the transient fault injector. Each parameter
is specified in the parameter file as a separate line. The first
two parameters indicate the fault type, with the arch state id
specifying the type of instructions that should be injected and
the bit-flip model indicating the type of bit-level corruption.
The last five parameters specify the exact fault to be injected.
As described above, the tuple of <kernel name, kernel count,
instruction count> values specifies the dynamic instruction to
inject. The exact error pattern depends on the selected bit-flip
model indicated for the bit pattern value.

Users that are concerned about reliability and safety will
often select processors with ECC protection for large on-chip
memory structures, such as register files and caches. Thus, the
remaining vulnerability to faults lies outside of these ECC-
protected structures. For faults in the unprotected components



TABLE II
TRANSIENT FAULT PARAMETERS.

Category Parameter name Description

Fault types

arch state id An integer representing the instruction subset to inject
1) G FP64, FP64 arithmetic instructions
2) G FP32, FP32 arithmetic instructions
3) G LD, instructions that read from memory
4) G PR, instructions that write to predicate registers only
5) G NODEST, instructions with no destination register
6) G OTHERS
7) G GPPR, instructions that write to general purpose and predicate regis-

ters, i.e., G GPPR = all - G NODEST
8) G GP, instructions that write to general purpose registers, i.e., G GP

registers = all - G NODEST - G PR
bit-flip model An integer representing the type of bit-error pattern

1) FLIP SINGLE BIT, flip a single bit
2) FLIP TWO BITS, flip two adjacent bits
3) RANDOM VALUE, write a random value
4) ZERO VALUE, write value 0

Specific target

kernel name The name of the target GPU kernel
kernel count An integer n representing the (n+ 1)th dynamic instance of the target kernel,

e.g., 0 indicates the first dynamic instance
instruction count An integer n representing the (n+1)th dynamic instance of the target instruction
destination register A floating-point value [0,1) that determines which general-purpose or predicate

register to inject depending on the arch state id
bit-pattern value A floating-point value [0,1) that determines the bit-error mask depending on

the bit-flip model
1) FLIP SINGLE BIT: 0x1<<(32 × value)
2) FLIP TWO BITS: 0x3<<(31 × value)
3) RANDOM VALUE: 0xffffffff × value
4) ZERO VALUE: mask is same as original register value, so that XOR

produces 0x0

TABLE III
PERMANENT FAULT PARAMETERS.

Parameter name Description
SM id An integer 0..N − 1 indicating which of the N SMs to inject
Lane id An integer 0..31 indicating which hardware lanes to inject
Bit mask An integer representing the XOR bit mask
Opcode id An integer 0..N − 1 indicating which opcode to inject. Each ISA will have a different set of N

opcodes. For example, the Volta ISA contains 171 opcodes.

to propagate to the application outputs, the error propagation
must corrupt at least one register. Thus, NVBitFI models faults
in terms of their eventual effect on registers.

Specifically, our transient fault models the effect of a
transient fault as corrupting a single destination register of
a single dynamic instruction. Furthermore, we model the bit-
level corruption as either a single or double bit-flip, random
corruption, or a zeroing effect. Although the errors from realis-
tic faults will likely have more complicated manifestations, we
offer these fault model options as a generalizable fault model.
Errors may manifest across multiple registers if the fault
affects persistent microarchitectural state. Also, bit-level error
patterns are likely dependent on the opcode and instruction
inputs. Because these more realistic error effects are difficult to
generalize in a parameterized fault model, we offer a simpler,
but more generalizable fault model. Future directions include
targeting a specified thread, more complex bit patterns, the
use of fault models with a greater number of more complex
parameters as well as a fault dictionary that is parameterized

based on opcodes, input registers, and other state.

Permanent fault model. NVBitFI also supports a perma-
nent fault model, which assumes that the fault affects all
dynamic instances of an instruction type. For example, a
permanent fault in an ALU would affect the results of all
ADD instructions. The NVBitFI permanent fault model takes
a simplistic approach to specifying the effects of this type
of fault model, with the destination registers of all dynamic
instances of a particular opcode being corrupted with the same
bit-flip XOR mask.

Table III shows the parameters for permanent faults. The
list of parameters is simpler than for transient faults because
the dynamic instruction to inject does not need to be specified.
Rather, the opcode is specified, and all dynamic instructions
with that opcode are injected. Because the permanent fault
model is mapped to a physical location on the GPU, the SM
and lane parameters indicate which SM and which hardware
lane to target for injection. All threads that execute in the target
SM and lane are considered for injection.



As with transient faults, we focus on a simple permanent
fault model in order to present a generalizable fault model.
We realize that realistic permanent faults likely have error
effects that are not always dependent on the execution of
specific opcodes. Some permanent fault models may be easy
to specify. For example, a stuck-at fault on the output of a
register file could be emulated as a corruption of the nth

bit of every read of the register file. A fault in an ALU
could corrupt the result of multiple opcodes that utilize that
ALU. Future work includes determining which specialized
permanent fault models represent faults that users are likely
to find interesting. Also, a fault dictionary approach could
be utilized, especially if that fault dictionary is derived from
circuit and microarchitectural simulation. We discuss more
sophisticated permanent fault models in Section V, but our
current model allows analysis of a fault that repeatedly creates
errors.

C. NVBit

The profiler.so and injector.so libraries are built
using NVBit [9]. NVBit is a dynamic binary instrumentation
framework for NVIDIA GPUs that provides a convenient API
for instruction inspection, callbacks to CUDA driver APIs, and
injection of arbitrary CUDA functions into any application
before kernel launch. NVBit allows instrumentation tools to
be created for CUDA programs without requiring the tool
writer to have detailed knowledge of the underlying GPU
architecture.

By leveraging NVBit, the same tool without recompilation
can be used to inject faults into any CUDA executable,
which simplifies usage of the fault injector. The dynamic
library is attached to a CUDA process using the LD_PRELOAD

environment variable.
As each dynamic kernel is launched, NVBit will determine

if that kernel must be instrumented. If so, the kernel is instru-
mented and built with just-in-time compilation. That kernel is
cached so that a subsequent launch uses the cached compiled
version. A kernel that does not need to be instrumented
is executed with no modification. This mechanism allows
selective and fast instrumentation.

IV. TOOL EVALUATION

NVBitFI has been applied successfully to a large, com-
mercial autonomous vehicle software (AV) application [22].
This complex application uses many dynamic libraries from
several software packages. Thus, fault injection tools that
require source code recompilation would struggle to manage
the source across these multiple packages. A fault injection
tool based on cuda-gdb would not require recompilation or
management of source code. However, cuda-gdb is a general
debugger that is not designed specifically for fault injection
and therefore must maintain a large amount of state for each
dynamic kernel. This additional state management imposes a
significant performance penalty. Because the AV application is
a real-time system, the performance overhead from cuda-gdb
would have triggered real-time assertions in the application.

TABLE IV
SPECACCEL OPENACC 1.2 BENCHMARK PROGRAMS.

Static Dynamic
Program Description kernels kernels

303.ostencil Thermodynamics 2 101
304.olbm Computational fluid dynamics, 3 900

Lattice Boltzmann Method
314.omriq Medicine 2 2
350.md Molecular dynamics 3 53
351.palm Large-eddy simulation, 100 7,050

atmospheric turbulence
352.ep Embarrassingly parallel 7 187
353.clvrleaf Weather 116 12,528
354.cg Conjugate gradient 22 2,027
355.seismic Seismic wave modeling 16 3,502
356.sp Scalar Penta-diagonal solver 71 27,692
357.csp Scalar Penta-diagonal solver 69 26,890
359.miniGhost Finite difference 26 8,010
360.ilbdc Fluid mechanics 1 1,000
363.swim Weather 22 11,999
370.bt Block Tri-diagonal solver 50 10,069

for 3D PDE

TABLE V
POSSIBLE ERROR PROPAGATION OUTCOMES.

Outcome Symptom

SDC
Standard output is different
Output file is different

DUE
Timeout, indicating a hang (Monitor detection)
Process crash (OS detection)
Non-zero exit status (Application detection)
Application-specific check failed

Masked No difference detected

Potential DUE (SDC or Masked) with CUDA error
(SDC or Masked) with dmesg error

Among the fault injection tools that we are aware of, NVBitFI
is the only tool that allows fault-injection based evaluation of
such a large, real-time system.

This section uses the SpecACCEL OpenACC v1.2 bench-
mark [23] to illustrate how NVBitFI can be used to measure
error propagation outcomes and associated injection perfor-
mance overheads. We use the 15 OpenACC applications that
are derived from a range of high-performance computing
applications, as shown in Table IV. We inject faults into an
NVIDIA Titan V GPU as part of a system with an AMD
EPYC 7402P 24-Core Processor and 256 GB of memory.

A. Outcome Determination

For each application, we add an SDC checking script to
determine if an SDC has occurred. The determination of what
constitutes an SDC is both application and user dependent, so
SDC checking scripts must always be provided by the user.
The SDC checking script should reference a saved, golden ver-
sion of the standard output and any files created without fault
injection. The SpecACCEL package conveniently includes a
program-specific checking script with each program, which we
use to determine if an SDC has occurred.

The possible outcomes of NVBitFI injections are listed in
Table V. SDC outcomes are due to any one of the following
conditions: the standard output differs from the golden output,



the output file contents differ from the golden file contents, or
an application-specific check (e.g., an assertion) failed. DUE
outcomes are due to hangs, crashes, and non-zero exit status. If
the application passes the SDC check, then the error is masked.

In some cases, a potential DUE can be declared despite
symptoms of an SDC or a masked outcome if a non-handled
anomaly is recorded by the system. One common anomaly is a
non-fatal CUDA message, usually involving a memory access
violation. For example, a GPU error that causes a misaligned
or non-mapped memory access would normally cause a fatal
error for CPU code. However, a similar error on a GPU causes
early termination of the current kernel but is otherwise non-
fatal to the process unless the CPU code explicitly checks for
the error at the end of the kernel. In such cases, the GPU
detected the error, but CPU code did not check for it. We
consider these cases to be potential DUEs because the program
code could be modified to check for and handle the error. In
our following results, we count potential DUEs as either SDC
or masked.

We conducted a fault injection campaign targeting the
SpecACCEL OpenACC v1.2 applications using NVBitFI. Sec-
tion IV-B discusses the SDC, DUE, and masked outcomes,
and Section IV-C shows the overheads incurred by both the
profiling and injection steps.

B. Benchmark Fault Injection Outcomes

We conducted three types of fault injection experiments on
each of the 15 SpecACCEL programs: (1) transient faults with
exact profiling, (2) transient faults with approximate profiling,
and (3) permanent faults. For each transient fault experiment,
we injected 100 faults for each program. For the permanent
fault experiment, we injected one fault for each opcode. We
classified the outcomes of each run based on the criteria in
Section IV-A. The specific insights we wanted to analyze
with these experiments include (1) the differences (between
exact and approximate profiling and (2) the manifestation of
permanent faults. More injected faults are necessary to tighten
the confidence interval for all results [24], [25]. While we show
experiments with 100 injections as an example (100 injections
provide results with 90% confidence intervals and ±8% error
margins), 1000 injections are necessary to obtain results with
95% confidence intervals and ±3% error margins.

Exact versus approximate profiling. As described in
Section III-A, approximate profiling is a faster method for
profiling but may result in a profile that does not completely
match a profile from exact profiling. Figure 2 compares the
error propagation outcomes for exact and approximate profil-
ing. The figure shows that although the results do not match
completely for exact and approximate profiling, the results for
most of the programs appear quite similar. The SDC, DUE,
and masked differences are 32.5% versus 37.9%, 4.2% versus
4.5%, and 63.3% versus 57.6%, respectively. These results
suggest that approximate profiling produces results that are
sufficiently similar to exact profiling to provide sufficient fault
injection fidelity. However, the similarity between approximate
and exact profiling depends on the application. The NVBitFI

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

A
p

p
ro

x
Ex

ac
t

A
p

p
ro

x
Ex

ac
t

A
p

p
ro

x
Ex

ac
t

A
p

p
ro

x
Ex

ac
t

A
p

p
ro

x
Ex

ac
t

A
p

p
ro

x
Ex

ac
t

A
p

p
ro

x
Ex

ac
t

A
p

p
ro

x
Ex

ac
t

A
p

p
ro

x
Ex

ac
t

A
p

p
ro

x
Ex

ac
t

A
p

p
ro

x
Ex

ac
t

A
p

p
ro

x
Ex

ac
t

A
p

p
ro

x
Ex

ac
t

A
p

p
ro

x
Ex

ac
t

A
p

p
ro

x
Ex

ac
t

A
p

p
ro

x
Ex

ac
t

Pe
rc

en
ta

ge
 o

f 
To

ta
l O

u
tc

o
m

es

Exact vs. Approximate Profiling
for Transient Fault Injection Results 

SDC DUE Masked

3
0

3
.o

st
en

ci
l

3
0

4
.o

lb
m

3
1

4
.o

m
ri

q

3
5

0
.m

d

3
5

1
.p

al
m

3
5

2
.e

p

3
5

3
.c

lv
rl

ea
f

3
5

4
.c

g

3
5

5
.s

e
is

m
ic

3
5

6
.s

p

3
5

7
.c

sp

3
5

9
.m

in
iG

h
o

st

3
6

0
.il

b
d

c

3
6

3
.s

w
im

3
7

0
.b

t

A
ve

ra
ge

Fig. 2. Comparison of exact and approximate profiling for transient faults.
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Fig. 3. Relative outcomes for permanent faults.

user will have to consider the trade-off between profiling
accuracy and profiling time.

Permanent faults. NVBitFI supports permanent faults
based on the fault model described above. Figure 3 shows the
relative occurrence of SDC, DUE, and masked outcomes for
permanent faults. For each program, 171 runs were conducted
with one opcode out of the possible 171 opcodes selected for
injection for each run. The outcome of each run is weighted
based on the relative number of dynamic instructions for that
opcode. For example, if injections into the FADD instruction
results in an SDC and accounts for 10% of all program
instructions and FMUL results in a DUE and accounts for
20% of all program instructions, then the DUE outcome would
be weighted twice that of the SDC outcome. This weighting
reflects the greater likelihood that the FMUL instruction is
executed and activates the permanent fault.

Compared to transient faults, the permanent faults for our
benchmark programs result in more SDC and DUE outcomes.
Masked outcomes constitute 57.6% for transient faults but
only 17.4% for permanent faults. This result is intuitive as
permanent faults are activated multiple times and result in
greater error propagation, leading to more SDCs and DUEs.
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C. Benchmark Performance Overheads

Figure 4 shows the overheads for profiling and injection,
relative to the runtime of an uninstrumented program. Profiling
need only be performed once per application to characterize
the set of injection sites. The overhead for exact profiling can
be quite large (as much as 558× for 350.md), especially if the
instrumentation causes GPU registers to be spilled to memory.
On average, our programs demonstrate an exact profiling
overhead that is 28× more than approximate profiling. If the
exact profiling time is unacceptable, approximate profiling
offers an attractive alternative.

In contrast to profiling, injection experiments must be per-
formed many times to obtain statistical confidence. For these
programs, injection times can vary depending on the amount of
instrumentation added to a program and the number of times
that instrumentation is executed. The injection times in Fig-
ure 4 are the median from the set of 100 injection experiments
for each program and fault type. For our programs, transient
fault injection slows down program execution by about 2.9×,
while permanent fault injection slows down program execution
by about 4.8× on average.

In a testing campaign, transient error experiments must
be run enough times to be statistically significant, while
permanent fault injection experiments must be run once for
each opcode. Furthermore, permanent fault experiments can be
skipped for unused opcodes, further simplifying the campaign.
Figure 5 illustrates aggregate campaign times for transient
campaigns with 100 faults and permanent campaigns that
leverage a profile to identify unused opcodes. The number
of executed opcodes for our programs ranges from 16 to 41
opcodes per program (out of the total possible 171 opcodes).
For these applications, the transient campaigns typically take
about twice the time as the permanent campaigns, although
the transient campaign can take as much a 5× longer or be
slightly faster.

V. SUMMARY AND FUTURE DIRECTIONS

We have presented the NVBitFI tool for dynamic fault
injection into GPUs. The tool is built using the NVBit dy-
namic binary instrumentation framework and therefore offers
a convenient way to conduct a fault injection campaign into
GPUs without having to know many details about the GPU.
Furthermore, no source code for the target program is required,
which not only simplifies the user’s job but also allows faults
to be injected into dynamic libraries for which no source
code is available. Porting the tool to non-Nvidia GPUs would
require (a) a binary instrumentation tool on the GPU and (b)
porting the handlers from CUDA to something like OpenCL
or employing a translator (e.g., HIP [26]) to perform the
translation.

Using the NVBit framework, NVBitFI can limit instru-
mentation needed for fault injection to the dynamic instance
of the target kernel. Non-target instances of the same static
kernel execute unmodified, thus minimizing the performance
overhead of the injection code.

NVBitFI currently supports a transient and a simple perma-
nent fault model. We are considering extensions of the fault
model, including the following:

• Intermittent faults. The permanent fault model corrupts
the destination register of every dynamic instruction of
a particular opcode. An intermittent fault model would
inject into only a subset of those instructions. The subset
can be specified as a random, bursty process.

• More complex fault models. Our current fault models
can be extended to provide additional flexibility in spec-
ifying fault parameters, including (1) corrupting multiple
registers, (2) supporting corruption functions beyond the
current set of XOR, random, and zero functions, (3)
conditioning error effects on the specific opcode, and (4)
allowing a permanent fault to affect multiple opcodes.

• Fault dictionary. A fault dictionary based on microar-
chitectural simulation or an analytical model is a specific
example of a more complex fault models. A fault dictio-
nary might be useful when a complex fault model is not
easily characterized by a set of parameters.
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