
Implicit Memory Tagging:
No-Overhead Memory Safety Using Alias-Free Tagged ECC

Michael B. Sullivan
NVIDIA

Austin, TX, USA
misullivan@nvidia.com

Mohamed Tarek Ibn Ziad
NVIDIA

Westford, MA, USA
mtarek@nvidia.com

Aamer Jaleel
NVIDIA

Westford, MA, USA
ajaleel@nvidia.com

Stephen W. Keckler
NVIDIA

Austin, TX, USA
skeckler@nvidia.com

ABSTRACT
Memory safety is a major security concern for unsafe program-
ming languages, including C/C++ and CUDA/OpenACC. Hardware-
accelerated memory tagging is an effective mechanism for detecting
memory safety violations; however, its adoption is challenged by
significant meta-data storage and memory traffic overheads. This
paper proposes Implicit Memory Tagging (IMT), a novel approach
that provides no-overhead hardware-accelerated memory tagging
by leveraging the system error correcting code (ECC) to check for
the equivalence of a memory tag in addition to its regular duties
of detecting and correcting data errors. Implicit Memory Tagging
relies on a new class of ECC codes called Alias-Free Tagged ECC
(AFT-ECC) that can unambiguously identify tag mismatches in the
absence of data errors, while maintaining the efficacy of ECC when
data errors are present. When applied to GPUs, IMT addresses
the increasing importance of GPU memory safety and the costs of
adding meta-data to GPUmemory. Ultimately, IMT detects memory
safety violations without meta-data storage or memory access over-
heads. In practice, IMT can provide larger tag sizes than existing
industry memory tagging implementations, enhancing security.

CCS CONCEPTS
• Security and privacy → Hardware security implementa-
tion; • Hardware→ Error detection and error correction.

KEYWORDS
memory tagging, memory security, error correcting codes
ACM Reference Format:
Michael B. Sullivan, Mohamed Tarek Ibn Ziad, Aamer Jaleel, and Stephen
W. Keckler. 2023. Implicit Memory Tagging: No-Overhead Memory Safety
Using Alias-Free Tagged ECC. In Proceedings of the 50th Annual Interna-
tional Symposium on Computer Architecture (ISCA ’23), June 17–21, 2023,
Orlando, FL, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3579371.3589102

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the owner/author(s).
ISCA ’23, June 17–21, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0095-8/23/06.
https://doi.org/10.1145/3579371.3589102

2006 2010 2014 2018
Year

0

50

100

Pe
rc

en
t

Breakdown of CVEs Over Time

Adjacent Mem.

Non-Adjacent Mem.

Not Memory Safety

Figure 1: The prevalence of exploitable memory safety bugs
in C/C++ code. Derived from slides 10 and 13 of [40].

1 INTRODUCTION
Business-critical servers, datacenters, high performance comput-
ing systems, and autonomous vehicles demand high dependability
against both random hardware errors and security attacks. Mem-
ory safety is perhaps the largest security concern for unsafe pro-
gramming languages, including C/C++ on CPUs [62, 67, 70] and
CUDA/OpenACC for GPU programming [8, 39, 49]. Memory safety
bugs persist in CPU programs despite the availability of various
debugging tools, with Figure 1 showing that they have historically
accounted for roughly 70% of the exploitable conditions in the
Common Vulnerabilities and Exposures (CVE) database.
Memory tagging is an attractive hardware-accelerated mecha-

nism for detecting memory safety vulnerabilities. It has been widely
adopted in academic research [24] and in industry through SPARC
Application Data Integrity (SPARC ADI) [48] and the ARM Mem-
ory Tagging Extension (ARM MTE) [4]. However, the adoption of
memory tagging faces two primary challenges: (1) considerable
meta-data storage and memory traffic overheads and (2) weak prob-
abilistic security guarantees. By using a limited set of tags, mem-
ory tagging provides only probabilistic detection guarantees for
non-adjacent buffer overflows, where out-of-bounds accesses occur
beyond the immediate bounds of an allocation (e.g., a[d], with an
attacker-controlled displacement d). Unfortunately, non-adjacent
overflows are gaining more popularity in the recent years as shown
in Figure 1. One way to strengthen the probabilistic memory tag-
ging guarantees is to increase the tag size. While this approach
provides heightened security, it comes at the expense of storage,
memory traffic, or reliability overheads.
This paper proposes Implicit Memory Tagging (IMT), a scheme

to provide hardware-accelerated memory tagging with no storage

https://doi.org/10.1145/3579371.3589102
https://doi.org/10.1145/3579371.3589102
https://doi.org/10.1145/3579371.3589102

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Michael B. Sullivan, Mohamed Tarek Ibn Ziad, Aamer Jaleel, and Stephen W. Keckler

or memory traffic overheads. IMT leverages the system error cor-
recting code (ECC) to check for the equivalence of a memory tag in
addition to its regular duties of detecting and correcting data errors.
IMT relies on a novel class of ECC codes we call Alias-Free Tagged
ECC (AFT-ECC) that can unambiguously identify tag mismatches
in the absence of data errors, while maintaining the efficacy of
ECC when data errors are present. In contrast with prior work that
either uses very small tags or offers probabilistic equivalence check-
ing [14, 28, 59], IMT can perfectly diagnose tag mismatches with
a maximum-length tag. The error detection capabilities of ECC are
maintained by AFT-ECC against severe data errors, and single-bit
data errors can be corrected.
Implicit Memory Tagging can be applied to any device with an

ECC-protected memory hierarchy. We evaluate IMT on GPUs due
to the growing importance of GPU memory safety and the cost
associated with adding meta-data to GPU memory. As CPUs pro-
gressively employ hardware-based memory safety mitigations and
GPUs increasingly can touch more application memory [16, 55, 56],
GPU-side exploits become a valuable target [8, 39, 49]. However,
GPU memory capacity is relatively small, it cannot be increased
easily [7], and adding meta-data consumes relatively-scarce mem-
ory bandwidth. Accordingly, we use IMT to tag GPU memory with
no extra meta-data by leveraging the existing GPU ECC.

The main contributions of this paper are as follows.

• We propose a novel and general class of ECC codes we call
Alias-Free Tagged ECC (AFT-ECC). These codes embed a
maximum-length tag in the ECC check-bits, and they are
able to unambiguously identify tag mismatches while pre-
serving single-bit data error correction. We demonstrate how
to generate a parity-check matrix with alias-free tag bits and
the limits of how large a tag can be with the alias-free prop-
erty. For most common error-correcting codeword sizes, the
maximum tag size is one fewer bit than the ECC redundancy.

• We propose Implicit Memory Tagging (IMT) to provide
hardware-accelerated memory safety with no storage or
memory traffic overheads. Implicit Memory Tagging uses
AFT-ECC to check for the equivalence of a memory tag in
addition to its regular duties of detecting and correcting data
errors.

• We demonstrate that IMT outperforms alternative hardware-
accelerated memory tagging approaches in performance, se-
curity, and reliability. Our approach incurs no performance
penalties on top of those already imposed by ECC protec-
tion, it does not degrade the error correction or detection
capabilities of the underlying ECC code, and in practice it
can provide a larger tag size than existing industry memory
tagging implementations.

2 BACKGROUND
2.1 Basic Terminology
This paper aims to achieve high reliability, availability, and both
spatial and temporal memory safety. Reliability involves preventing
silent data corruption (SDC) through error detection, while avail-
ability entails error correction to ensure rare interruptions and high

machine uptime. Spatial memory safety guarantees that memory
allocations are accessed within their intended bounds, while tem-
poral memory safety ensures that allocations are only used during
their lifetime. Undetected buffer over-/under-flows can compromise
spatial memory safety, whereas use-after-frees (dangling pointers)
can violate temporal memory safety.

2.2 Threat Model
We assume a comparable threat model to prior work on memory
safety for GPUs [9, 11, 33] and memory tagging on CPUs [4, 48],
where the victim program has one or more memory safety vulner-
abilities and that the attacker’s goal is to use malicious program
inputs to obtain arbitrary read or write access to memory. The
attacker can then use these read and write capabilities for vari-
ous malevolent ends, such as information leakage, data corruption,
and/or remote code execution. Additionally, we assume that the at-
tacker is aware of the memory tagging mechanism but they cannot
modify the program’s binary image. Finally, we assume that the
GPU driver and hardware are trusted and tamper-resistant. Hence,
we consider attacks that exploit hardware vulnerabilities, such as
RowHammer [29] and side-channel attacks [73], to be outside the
scope of this work.

2.3 Memory Tagging
Memory tagging is a technique to detect memory safety viola-
tions in low-level programming languages, such as C/C++ and
CUDA/OpenACC. It works by assigning a fixed-size lock tag to each
memory granule and storing an identical key tag in the upper bits
of data pointers. During execution, a memory safety violation is re-
ported upon a tagmismatch (TMM) between the lock tag inmemory
and the key tag of the pointer used to access it. Tags can be reused
to protect an unrestricted number of allocations. This is especially
important for massively-parallel GPU programs that use dynamic
per-thread memory allocations [46]. The tag size, TS, and granule
size, TG, impact the security, reliability, and performance of memory
tagging. Existing implementations tend to use small tag sizes that
provide weak security guarantees. For instance, SPARC ADI [48]
assigns a TS=4-bit tag to each TG=64B memory granule, while
ARM MTE [4, 5] uses a TS=4-bit tag at the TG=16B granularity.

Efficient memory tagging schemes such as SPARC ADI or ARM
MTE are mostly implemented in hardware, with key and lock tag
equivalence checking for every memory access. However, there is
also a software component that tags memory objects when they are
allocated and clears the tags when they are freed using specialized
ISA instructions. Our work optimizes the storage, movement, and
checking of the lock tag, which is responsible for most of the over-
heads associated with memory tagging. We do not provide detailed
information about the software runtime or ISA changes because
these components require no modification for IMT.

2.4 GPU Memory Hierarchy
This paper applies IMT to GPUs using NVIDIA terminology. Fig-
ure 2 shows the memory hierarchy of a discrete GPU. GPUs rely
on many high-bandwidth memory channels to support concurrent
DRAM accesses from a massive number of threads. Each DRAM
channel is connected to one or more L2 slices; these L2 slices are

Implicit Memory Tagging: No-Overhead Memory Safety Using Alias-Free Tagged ECC ISCA ’23, June 17–21, 2023, Orlando, FL, USA

High-Speed Crossbar

L1/SharedMem

Registers

SM

ECC

ECC

L2 Slice ECC

DRAM ECC

L2 Slice ECC

DRAM ECC

L2 Slice ECC

DRAM ECC

L1/SharedMem

Registers

SM

ECC

ECC

Figure 2: The memory hierarchy of NVIDIA GPUs.

shared among all streaming multiprocessors (SMs) through a large
high-speed crossbar. Each SM has its own L1 cache, which can
also be configured to operate as a shared memory scratchpad. The
minimum access granularity of GPU memory (GDDR [19, 20, 22]
or HBM [21, 23]) is 32B. Thus, we assume that GPUs support a
fine-grained 32B access granularity throughout the memory hier-
archy using sectored caches; this is corroborated by prior work
on NVIDIA GPUs [25] and work that shows fine-grained GPU ac-
cesses to be performant for important workloads [53]. All major
storage structures are ECC-protected in compute-class GPUs, and
we assume that a single codeword is formed for each 32B sector of
data, to align with the memory access granularity.

2.5 Error Detecting and Correcting Codes
An error correcting code (ECC) detects and possibly corrects er-
rors using redundant values generated algorithmically from the
data. An (N, K) code has N total bits with K data-bits and R=(N–K)
check-bits. A valid ECC data and check-bit pair is called a codeword.
Encoding is the process of generating a codeword from data, while
decoding is the process of detecting and (possibly) correcting errors
in a codeword to restore the original data. Encoding and decoding
are typically performed in low-latency fixed-function hardware.
An ECC code with R bits of redundancy can provide single-bit

error correction on up to N=2R–1 bits (including the check-bits,
themselves). The maximal data size is therefore a non-power-of-2
bits, and it is common to shorten an ECC code by having fewer than
the allowable data bits. The SDC risk of shortened codes decreases
with the number of data bits. A heavily shortened code (with more
check-bits than is strictly necessary to provide single-bit error cor-
rection) can be used to decrease the SDC risk to low levels.

2.6 Tagged ECC
Alias-Free Tagged ECC builds upon priorwork that proposes Tagged
ECC, where a shortened ECC code is extended to also check for the
equivalence of a tag. Four decades ago, Gumpertz was the first to
describe the concept of tag checking with ECC [13, 14]. Sazeides et
al. describe a similar scheme they call error code tagging [59]. Multi-
ple works use a form of memory tagging to protect against random
DRAM address errors [28, 58]. Alias-Free Tagged ECC improves
upon this prior work by unambiguously detecting tag mismatches
using a maximum-width tag. By maximizing the tag size, AFT-ECC
provides the highest possible security guarantees for IMT.

2.7 ECC in GPUs
Compute-class GPUs use ECC to protect major storage structures
including GPU DRAM, caches, and register files, as shown in Fig-
ure 2. The GPU memory hierarchy is purportedly protected us-
ing single-bit-error-correcting and double-bit-error-detecting
(SEC-DED) ECC [1, 42], which requires at least 10 bits of redun-
dancy to protect each 32B memory location. Redundancy is provi-
sioned in DRAM at the byte granularity, however, due to structural
constraints. Modern HBM3memory provisions 2B of sideband rank-
level ECC per 32B data access [23]. Embedded ECC with GDDR6
memory is implemented using the same 6.25% redundancy,1 which
we assume also offers 2B of ECC per 32B data access. This pa-
per therefore evaluates two GPU ECC configurations: one with
the minimum 10 bits of SEC-DED redundancy, and one with the
DRAM-provided 16 bits of redundancy.

3 ALIAS-FREE TAGGED ECC
We propose a novel and general class of ECC codes called Alias-Free
Tagged ECC (AFT-ECC) that perform tag equivalence checking us-
ing the ECC check-bits. Alias-Free Tagged ECC codes are designed
to support large tags and unambiguously identify tag mismatches
while preserving single-bit data error correction. We demonstrate
how to generate a parity-check matrix with alias-free tag bits, the
limits of how large a tag can be with the alias-free property, and
recommend some concrete code designs below.

3.1 Linear Codes and the Parity Check Matrix
A linear block code generates its R check-bits using a linear combi-
nation of the data. An R×N parity checkmatrix, H, determines the al-
lowed linear relations for a given code. Valid codewords are defined
as those that fall in the null space of H, as shown by Equation 1a.2
An N-bit codeword, c, could potentially suffer from an error, e, dur-
ing storage, transmission, or decoding. In this case the codeword is
corrupted to ce (“codeword with error”), as shown in Equation 1b.

H∗cT = 0 (1a)
ce = c+e (1b)

Upon receiving a possibly-erroneous codeword, the decoder first
generates a syndrome, s, as shown in Equation 2. If the codeword is
invalid, the syndrome will be non-zero. The magnitude of the syn-
drome depends only on the error. Error correction can take place for
a restricted class of errors (e.g., single-bit corruption) by constrain-
ing H such that each correctable error maps to a single unique syn-
drome. For example, to provide single-bit error correction, the con-
straints on the H matrix are simple: every column must be unique.

s = H∗cTe =H∗(c+e)T︸ ︷︷ ︸
From Equation 1b

=H∗cT+H∗eT= 0︸︷︷︸
From Equation 1a

+H∗eT = H∗eT (2)

A systematic code is one whose data and check-bit locations are
fixed at design time; most practical ECC codes are systematic [12].
Structurally, a systematic code places further constraints on the
1We estimate the GDDR embedded ECC redundancy by inspecting an NVIDIA T4
GPU [43] using the nvidia-smi tool—with ECC enabled, the available device memory
is 6.25% smaller than with ECC disabled.
2Arithmetic is being performed in a binary finite field (GF(2)), where single-element
addition and multiplication correspond to XOR and AND operations, respectively.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Michael B. Sullivan, Mohamed Tarek Ibn Ziad, Aamer Jaleel, and Stephen W. Keckler

parity check matrix. The canonical form of a systematic parity
check matrix is shown in Equation 3. The check-bit columns are
constrained to form the identity matrix. Thus, the systematic H ma-
trix can be thought of as two submatrices: the R×K data submatrix
(DK) and the R×R identity submatrix (IR).

HSystematic =
(
DK | IR

)
︸ ︷︷ ︸
N = K + R

}
R (3)

3.2 Tagged ECC
Tagged ECC is a construction where decoding also checks for the
equivalence of a TS-bit tag [13, 14]. Tagged ECC introduces an ad-
ditional R×TS parity check submatrix, TTS, as shown in Equation 4.
Such tagging is possible for any sufficiently-shortened ECC code.

HTagged =
(
TTS | DK | IR

)
︸ ︷︷ ︸
N = TS + K + R

}
R (4)

Figure 3 shows the Tagged ECC encoder and decoder. Tagged ECC
works by generating ECC check-bits using both the data and tag,
but crucially it never stores the tag explicitly to memory. Rather,
upon ECC decoding the equivalence of the encoded tag is checked
against a reference tag that is given to the decoder.

Data

{Data, Check-Bits}

Embed TagEncoder

(a) Tagged ECC Encoder.

Check Tag

{Data,Check-Bits}

CorrectedData DUEorTMM

Decoder

(b) Tagged ECC Decoder.

Figure 3: Tagged ECC. The tag is encoded and decoded in
ECC but it is never written to memory. DUE = Detectable-
Uncorrectable Error; TMM = Tag Mismatch.

Tagged ECC Limitations: Previous Tagged ECC implementa-
tions are limited in two ways, each of which would reduce the
security of memory tagging. Some implementations are restricted
to small tags [14, 28, 59]. Others allow unrestricted tag size but
provide only probabilistic tag mismatch guarantees (e.g. tag-hashed
configurations from [13], or address parity [58]), meaning that some
invalid tags remain undetected. Both approaches are unsuitable for
tagged memory due to the security degradation caused by limited
tag sizes or tag aliasing.

3.3 Alias-Free Tagged ECC Code Construction
Tagged ECC is an important concept which forms the theoretical
basis of this work, but in its prior form it has limited applicabil-
ity for memory tagging due to its limited tag size or probabilistic
nature. This work proposes an improved code we call Alias-Free
Tagged ECC (AFT-ECC) that maintains the following properties.

(1) Alias-Free: A multi-bit error can cause an erroneous code-
word to alias to a valid-yet-wrong codeword, evading detec-
tion. A tag mismatch with TS>1 manifests to the decoder
as a multi-bit error, but we design the tag submatrix to be

alias-free, ensuring complete tag mismatch detection in the
absence of a data error.

(2) Single-Bit Error Correction: AFT-ECC maintains single-
bit error correction against data errors.

(3) Maximal Tag Size: AFT-ECC supports the largest possible
tag size with the above properties.

We denote the set of all linear combinations of the columns of
the tag submatrix TTS by T. Alternatively, this can also be thought
of as the column space of TTS.

Ensuring Alias-Free Tags: A tag submatrix is alias-free if no
tag mismatch remains uncaught (i.e. if 0 ∉T). In other words, all
columns of an alias-free tag submatrix must be linearly indepen-
dent. Thus, any left-invertible tag submatrix with full column rank
has the alias-free property.

Maintaining Single-Bit ErrorCorrection:Tomaintain single-
bit error correction, the column space of TTS must be not intersect
with any correctable error syndrome. Thus, to maintain single-bit
error correction, no column of the DK or IR submatrices should
appear in the column space of TTS.

Figure 4 visualizes the constraints placed on an AFT-ECC parity
check matrix. To maintain single-bit error correction, the column
space of TTS (T, yellow)must not intersect with the data and identity
submatrices (DN∪IR, light green). To ensure no tag aliasing, Tmust
also not contain the all-0-syndrome ({0}, red). As we describe later,
the syndrome of some multi-bit errors, including 2b errors (dark
green), do overlap with T, potentially leading to misattribution as
a TMM unless they are properly diagnosed at higher system levels.

𝕋: Col. Space of TTS

TTS:

Tag Sub-Matrix

DN∪ IR:

Data/Check-Bit

Sub-Matrix

Span2(DN∪ IR): 2b Error Syndromes
{0}

𝕌: Set of All Data Error Syndromes

Figure 4: A set-intersection visualization of the Alias-Free
Tagged ECC syndrome spaces.

3.4 Alias-Free Tag Size Limits
It follows from the alias-free property that the maximum tag sub-
matrix width is TS≤R. If TS>R, the R×TS tag submatrix will be
non-square with more columns than rows. Some linear dependence
must exist along the larger dimension of a non-square matrix, and
thus with TS>R the alias-free property cannot hold.

Because an alias-free submatrix maps each tag error to a unique
syndrome, the dimension of the column space of TTS is dim(T)=2TS–1.
Thus, error correction cannot be maintained when TS=R, as the
column space of T covers all possible non-zero syndromes, making
it impossible to have unique correctable bit-error syndromes. With
TS<R, however, there is the possibility of maintaining single-bit
error correction up to a certain data size. To maintain single-bit
error correction, dim(T) must be small enough to leave at least
K+R of the 2R–1 possible syndromes free. An upper bound on the
alias-free tag size with single-bit error correction is thus given by

Implicit Memory Tagging: No-Overhead Memory Safety Using Alias-Free Tagged ECC ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Equation 5a. Solving for the maximum tag size yields Equation 5b.
2R–1–(2TS–1)≥K+R (5a)

TS≤
⌊
log2(2R–K–R)

⌋
(5b)

Figure 5 evaluates the bound given by Equation 5b at various data
sizes and ECC redundancies. Each point is colored according to the
maximum value of TS at that (K, R). Unshortened codes are marked
with a left-facing triangle, and white points cannot support error
correction. The behavior is intuitive—an unshortened code cannot
support any tag; with one bit of shortening, at most TS=1-bit is
possible (dark blue). As the degree of shortening increases, so does
the maximum TS. For common SEC-DED codewords with a power-
of-2 data size, the maximum tag size is one fewer bit than the ECC
redundancy. We have marked the two codeword sizes we evaluate
for Implicit Memory Tagging with stars. At R=10, IMT supports
at most a TS=9-bit tag; at R=16, the maximum TS=15 bits.

32 64 128 256 512

Number of Data Bits (K, Log2 Axis)

6
7
8
9

10
11
12
13
14
15
16

N
um

be
ro

fC
he

ck
B

its
(R

)

White Space:
Not SEC

1

3

5

7

9

11

13

15
Maximum Tag Size (TS)

Figure 5: The maximumAlias-Free Tagged ECC tag size (TS)
across various data sizes and ECC redundancies.

3.5 Parity-Check Matrix Recommendations
An attractive strategy for selecting the tag and data submatrices is
to use a left-invertible matrix with all-even-weight columns for the
tag submatrix and unique all-odd-weight columns for the data sub-
matrix. This ensures that the tag submatrix is alias-free, and it main-
tains double-bit detection and single-bit correction of data errors.

Double-Bit Data Error Detection: Parity check matrices with
unique all-odd-weight columns (such as Hsiao codes [15]) are SEC-
DED, because the XOR of any two odd-weight columns gives an
even-weight syndrome, and no aliasing is possible between an
even-weight syndrome and exclusively odd-weight columns.

Maintaining Single-Bit Data Error Correction: The column
space of any all-even-weight tag submatrix is all-even. No aliasing
is therefore possible between the even-weight TTS column space
and the odd-weight DK or IR submatrices. Thus, single-bit error
correction is maintained.

Minimizing Hardware Overheads: One further recommen-
dation is to use all-weight-2 columns for the tag submatrix, to
minimize the additional decoder area and delay.

Selected Tag Submatrices: Given the selection recommenda-
tions above, one can analytically find attractive tag submatrices
without an extensive search. Equation 6 gives a TTS recommenda-
tion for AFT-ECC with R=16 bits of ECC redundancy, which can

support up to a TS=15 bit tag for most data sizes. The number of 1s
is minimized in this alias-free tag submatrix (reducing decoder area),
as well as the maximum number of 1s per row (reducing delay).

TTS (R≤ 16, TS≤ 15) =

©«

000000000000001
000000000000011
000000000000110
000000000001100
000000000011000
000000000110000
000000001100000
000000011000000
000000110000000
000001100000000
000011000000000
000110000000000
001100000000000
011000000000000
110000000000000

︸ ︷︷ ︸
(R=10,TS=9)

100000000000000

ª®®®®®®®®®®®®®®®®®®®®®®®®¬

(6)

Shortening the Tag Submatrices: The full tag submatrix in
Equation 6 supports the largest single-error-correcting tag size
(TS=R–1=15), which is valid only up to a certain data size. If more
data bits are required, one can lessen the TS of a new tag submatrix
by removing columns. As any subset of columns from an alias-free
tag submatrix is also alias-free, it does not matter which columns
are removed. The columns of TTS shown in Equation 6 are also
sorted to allow submatrix formation for lower ECC redundancies by
retaining only the R lowest rows. An example with (R=10, TS=9)
is highlighted in blue—the first 10 rows and 9 columns can be used
to create a valid tag submatrix at this size.

Selected Data Submatrices: The nature of our AFT-ECC tag
submatrix construction makes it easy to find an AFT-ECC data
submatrix—any all-odd-column DK is sufficient. That being said, a
search of the code space can provide modest benefits in some met-
rics. In this paper we use minimum odd-weight-column DK subma-
trices that are selected via a genetic algorithm to minimize the max-
imum number of 1s per row and to maximize 3-bit error detection.

3.6 AFT-ECC Behavior and Constraints
Alias-Free Tagged ECC is a general mechanism that may have many
uses—this paper focuses on the important problem of memory tag-
ging for security; possible other uses are described later in Section 7.
Alias-Free Tagged ECC provides tag equivalence checking while
maintaining the correction and detection capabilities of ECC, so
long as the use-case follows two constraints.

(1) Fatal TMM: To maintain the error detection capabilities of
ECC, a tag mismatch (TMM) must be fatal, or it must in-
clude some recovery action that also works for recovering
from data errors (e.g., rollback and restart from an error-free
checkpoint). This is because, in rare multi-bit error cases, a
severe data error could be misidentified as a tag mismatch.

(2) NoTagValues:Alias-Free Tagged ECC provides implicit tag
equivalence checking, but it does not explicitly store the tag
values. Thus, it is impossible to extract the tag value assigned
to an AFT-ECC codeword using without corrupting the ex-
tracted tag in the presence of some multi-bit data errors.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Michael B. Sullivan, Mohamed Tarek Ibn Ziad, Aamer Jaleel, and Stephen W. Keckler

If the fatal tag mismatch constraint holds, AFT-ECC has the fol-
lowing behavior. In the absence of a data error, all tag mismatches
are detected and properly attributed (TMM=100%). In the absence
of a tag mismatch, single-bit data errors are corrected. Because
multi-bit data errors are detected with the same probability as un-
tagged ECC, there is no increased risk of silent data corruption.
However, there is some misattribution risk of AFT-ECC reporting
a multi-bit DUE as a TMM. We quantify this misattribution risk
later in Section 5.3 and describe an optional driver-side diagnosis
procedure to avoid any misattribution in Section 4.3.

Importantly, with AFT-ECC there is no risk of reporting a TMM
as a DUE, which is desirable for IMT—due to the rarity of data errors
and the fact that attackers can induce tag mismatches, the expected
rate of TMMs far exceeds that of DUEs. If attacker-induced TMMs
could be misattributed as DUEs, it would render the reported DUE
rate essentially useless for reliability field studies. Also, if a TMM
could be misattributed as a DUE, an attacker could maliciously
trigger the GPU persistent error retirement mechanisms [44, 45]
to make them unusable.
There is a vanishingly small possibility of both a tag mismatch

and a random error affecting the same codeword.3 This rare event
is considered by some [28] but not all [13, 14, 51, 59] related eval-
uations. In the simultaneous presence of both events, the effective
number of erroneous bits is the sum of the tag mismatch and data
errors. In this case, AFT-ECC maintains high probabilistic error
detection, but it cannot guarantee detection of all 1 or 2-bit data
errors when combined with an arbitrary tag mismatch.

4 IMPLICIT MEMORY TAGGING
We propose Implicit Memory Tagging (IMT), a scheme to pro-
vide hardware-accelerated memory tagging on GPUs. IMT uses
AFT-ECC to overcome the limitations of prior tagged memory ap-
proaches and provide memory safety with no storage or perfor-
mance overheads and no additional risk of silent data corruption.

4.1 Prior Approaches and Limitations
ECC Stealing: At its core, memory tagging associates a TS-bit
tag with each TG-bit granule of memory. This is similar to how
each ECC codeword associates R check-bits with K bits of data. In
fact, ECC redundancy could possibly be “stolen” to instead provide
tagging for memory safety. While the details are proprietary and
unknown, this may be the way that SPARC ADI tags memory—
by placing its 4 tag bits in redundant sideband storage originally
envisioned for ECC check-bits [47, 60]. Similarly, IBM POWER9
systemsmay place a 1-bit tag in stolen ECC storage [32]. Placing the
lock tags in sideband ECC storage has no performance overheads,
but it comes at the cost of reduced reliability. As we show in Sec-
tion 5.3, each bit stolen from ECC roughly doubles the silent data
corruption risk. Some prior tagged memory implementations use
widened machine words (or reduced data dynamic ranges) to store
tags [24, 31, 76]. We consider this as largely equivalent to ECC steal-
ing, because this additional sideband storage could be used for ECC.

3One exception to this might be if an attacker could induce RowHammer errors
while crafting a tag mismatch. As mentioned in Section 2.2, RowHammer attacks are
out-of-scope for this paper and should be dealt with by other means.

L2 (WB) ECC

L1 ECC

XBAR

DRAM ECC

To/From Registers

DecEnc

Atomic

Enc

Dec

Key Tag

(a) Memory Subsystem

LD/ST

Unit

To/From Registers

Coalescer

DecEnc
Upper VA Bits

(Key Tag)

Lower VA Bits

Tags

To/From XBAR

L1 ECC MSHRs

(b) SM Changes

Figure 6: IMT propagates tag information along with ECC
check-bits. Only ECC encoder/decoder changes, widened
address busses, and some supplemental L1MSHRmeta-data
are needed (changes are highlighted).

Tag Carve-Out: As an alternative to ECC stealing, memory
tagging can rely on a dedicated, densely-packed carve-out of tag
bits [24]. To maintain high performance without sideband meta-
data such as ECC, the tag bits should be cached on chip, either in
a dedicated cache hierarchy (which adds area and complexity), or
as non-data information in the regular cache hierarchy (risking
cache pollution). It is likely that ARM MTE uses a tag carve-out
to implement memory tagging [4]. Using a tag carve-out does not
have any reliability implications, but it requires additional storage
capacity (both in off-chip and on-chip memory) and redundant
memory traffic to store, fetch, and cache the tags.

4.2 Implicit Memory Tagging Design
Rather than stealing ECC bits to explicitly store each lock tag, IMT
uses AFT-ECC to check for the equivalence of the key and lock tags
in addition to detecting and correcting data errors. This strategy
preserves the performance and storage advantages of ECC stealing,
without its reliability degradation.

End-to-End ECC and Widened Address Busses: Implicit
Memory Tagging embeds the lock tag in the ECC check-bits and
the key tag in the upper address bits. In practice, this requires that
the on-chip address busses down to the L2 cache be widened to
hold the key tags associated with a memory operation, unless the
address busses are sufficiently over-provisioned already. The key
tag is extracted from the address and passed to all ECC encoding
and decoding points. End-to-end ECC (as shown in Figure 6a) is
one possible implementation, where ECC check-bits are propagated
along with the data, and decoding is only performed shortly before
use. Alternatively, the key tag could be passed to all ECC encoders
and decoders in the path to main memory. End-to-end ECC must be
used past the point of the first write-back cache, however, as upon
a dirty writeback the ECC-embedded tag value cannot be safely
extracted from the AFT-ECC check-bits.

Support for Atomic Memory Operations: GPUs support
near-memory atomic operations that are serviced in the L2 cache.
To guard against L2 storage errors, the atomic datapath presumably
is surrounded by an ECC decoder and encoder. Thus, IMT must

Implicit Memory Tagging: No-Overhead Memory Safety Using Alias-Free Tagged ECC ISCA ’23, June 17–21, 2023, Orlando, FL, USA

pass the key tag to these encoders and decoders through widened
address busses, as seen in Figure 6a.

SM Changes: Several small augmentations are required in the
SM, as seen in Figure 6b. The upper virtual address (VA) bits are
extracted from the per-thread address stream before coalescing—
this ensures that the memory coalescing unit does not split apart
neighboring memory addresses with differing key tags. The key
tags are stored in the widened address bits of whatever structure
the L1 uses for miss-status handling. When data comes back from
a lower level of memory, the L1 MSHR structure provides the tag
to the AFT-ECC decoder.

4.3 Software Interface and Precise Diagnosis
Figure 7 shows the IMT hardware-software interface. When a fatal
error occurs, the faulting address, key tag, and ECC syndrome are
sent to the GPU driver for further diagnosis. This is similar to ex-
isting CPU error-reporting systems [2], and this information may
already be passed to the GPU driver. Driver-side error diagnosis is
performed in software to extract a stored tag estimate and option-
ally a golden reference tag for the faulting memory location; these
tags (along with the key tag) are used to differentiate between a
TMM, DUE, or both.

Key Tag: Upon a fatal error (TMM or DUE), the key tag is taken
from the upper address bits and sent to the driver.

Lock Tag: IMT can extract a lock tag estimate upon a TMM—
each tag error maps to a unique syndrome, which if XORed with
the key tag will give the lock tag. This can be performed by XORing
the key tag with the error pattern given by a 2R–1 entry syndrome
lookup table. If the syndrome of a fatal error is not in the tag syn-
drome table, the error is a DUE and the tag estimate is set to an
always-invalid value. If the fatal error is in the tag syndrome table,
the error is either a TMM (in which case the tag estimate is cor-
rect) or a misattributed DUE (in which case the lock tag estimate
is corrupted). Optionally, DUE misattribution can be avoided by
performing precise diagnosis in the GPU driver, as described below.

(Optional) Reference Tag: The GPU driver has knowledge of
all global memory allocations, and it can be optionally augmented
to precisely track the tags associated with each memory object
(perhaps through a storage-efficient tree structure [26, 50]). Upon a
fatal error, the driver traverses this structure to lookup a reference
tag for the faulting memory location. This relatively-expensive tag

Decoder

Single-Bit Corrected Data

Data Bits

Check Bits

Key Tag

In Hardware

Tag

Extraction
Syndrome

Key Tag

TagTMM/DUE/Both?

==?Lock Tag

Key Tag

Address Ref. Tag

In GPU Driver

Figure 7: Error and tag-mismatch analysis and reporting
in IMT. Correctable data errors are handled completely
in fixed-function logic. Fatal errors (TMMs or DUEs) are
diagnosed and logged in software. Key Tag = Tag in Upper
Pointer Bits; Lock Tag = Tag Extracted from Syndrome
Lookup; Ref. Tag = Driver-Side Reference Tag for the
Faulting Address.

lookup only needs to be performed in the rare case of a fatal error,
so it is not performance critical.

(Optional) Precise Diagnosis with Reference: Equation 7
shows the logic to precisely differentiate a TMM from a DUE using
the reference tag. In no case will the key and extracted lock tags
be equal—if they were, no fatal error would have been flagged by
the ECC decoder. Upon a TMM (no data error), the true stored lock
tag will be extracted and it will match the driver’s reference tag.
Upon a DUE (no tag mismatch), the lock tag will be corrupted but
the key tag and reference tag should be equal. If none of the three
tags match, both a multi-bit data error and a tag mismatch must
have occurred simultaneously.

Diagnosis=

TMM: Ref ≠Key and Ref =Lock
DUE: Ref =Key and Ref ≠Lock

BOTH: Ref ≠Key and Ref ≠Lock
(7)

Debug Mode: The fatal tag-mismatch constraint mentioned in
Section 3.6 arises from the need to maintain immediate error detec-
tion of severe multi-bit errors. Design-time testing and debugging
may benefit from passively logging TMMs, however, and we envi-
sion a privileged mode (e.g. through nvidia-smi) where the GPU
is reconfigured to asynchronously raise DUEs and to consider tag
mismatches non-fatal. This violates the synchronous error contain-
ment guarantees of modern GPUs [44], but it allows tag mismatches
to be logged without destroying the parent CUDA context.

4.4 IMT Configurations for GPU
Implicit Memory Tagging uses the unused upper bits of a data
pointer to store the key tag. GPUs are designed to support a variety
of CPUs with different virtual address ranges. The most common
virtual address spaces for GPUs are a 48b VA with x86_64 CPUs, a
49b VA with ARM CPUs, and a 46b VA with IBM POWER9 CPUs. In
this paper, we assume a 49b virtual address space, which has room
for up to 15-bit key tags.4 We propose two IMT configurations, with
differing ECC redundancies. IMT-16 utilizes the full GPU-provided
16 bits of redundancy per 32B access for ECC. It embeds a 15-bit lock
tag at the 32B codeword granularity. As Implicit Memory Tagging
is compatible with any sufficiently-shortened binary ECC, we also
introduce IMT-10, which features the minimum 10 bits of SEC-DED
redundancy. IMT-10 embeds a 9-bit tag per codeword.

5 EVALUATION
The following evaluation shows that Implicit Memory Tagging
outperforms alternative hardware-accelerated memory tagging ap-
proaches in performance, reliability, and security. Furthermore, we
show that the additional encoding and decoding hardware over-
heads from Alias-Free Tagged ECC are nominal.
Table 1 summarizes our findings, comparing and contrasting

Implicit Memory Tagging with prior memory tagging approaches.
The far left columns show ECC stealing and tag carve-out configu-
rations that are similar to SPARC ADI [48] and ARM MTE [4], with
a limited TS = 4-bit memory tag. We show two Implicit Memory
Tagging variants—IMT-10 and IMT-16—with 10 and 16 bits of re-
dundancy, respectively, alongside ECC stealing and tag carve-out
4Very recent x86_64 systems can operate with a 57-bit VA [3, 18], leaving only 7
unused upper bits. IMT could embed a 7-bit key tag on such systems, but we defer
this evaluation since most GPUs lack 57-bit VA support.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Michael B. Sullivan, Mohamed Tarek Ibn Ziad, Aamer Jaleel, and Stephen W. Keckler

Table 1: A comparison of alternative memory tagging implementations.

ECC Stealing
(SPARC ADI)

Tag Carve-Out
(ARM MTE)

ECC Stealing
Iso-Security-10

Tag Carve-Out
Iso-Security-10

Implicit Memory
Tagging (IMT-10)

ECC Stealing
Iso-Security-16

Tag Carve-Out
Iso-Security-16

Implicit Memory
Tagging (IMT-16)

Tag Granularity (TG) 32B∗ 16B 32B 32B 32B 32B 32B 32B
Tag Size (TS) 4b 4b 9b 8b† 9b 15b 16b† 15b

Tag Store Overhead 0% 3.125% 0% 3.125% 0% 0% 6.250% 0%
Avg. Perf Overhead‡ None 1–4% None 1–4% None None 2–7% None
Max Perf Overhead‡ None 32% None 32% None None 43% None

ECC Redundancy 12b 16b 1b 10b 10b 1b 16b 16b
Error Correction Yes Yes No Yes Yes No Yes Yes
Added SDC Risk§ 15.76× None 1.917× None None 120.0× None None

Num. Tags (glibc¶) 14 14 510 254 510 32766 65534 32766
Adj. Security (glibc¶) 92.857% 92.857% 99.804% 99.607% 99.804% 99.997% 99.998% 99.997%
Non-Adj. Sec. (glibc¶) 92.857% 92.857% 99.804% 99.607% 99.804% 99.997% 99.998% 99.997%

Num. Tags (Scudo¶) 7 7 255 127 255 16383 32767 16383
Adj. Security (Scudo¶) 100% 100% 100% 100% 100% 100% 100% 100%
Non-Adj. Sec. (Scudo¶) 85.714% 85.714% 99.608% 99.212% 99.608% 99.994% 99.997% 99.994%
∗ SPARC ADI protects at a TG=64B granularity, but we adjust this to match the 32B codeword size of GPU ECC.
† Our Iso-Security tag carve-out configurations are byte aligned to avoid expensive unaligned accesses.
‡ Workload runtime overheads; estimated using simulation, see Section 5.2 (Figure 8b).
§ Severe multi-bit SDC risk relative to 10b (IMT-10) or 16b (IMT-16) SEC-DED ECC; estimated using software decoders, see Section 5.3 (Figure 9).
¶ Security guarantees depend on how the memory allocator retags memory. IMT is compatible with any allocator; two existing examples are shown.

configurations that are designed to offer roughly-equal security
guarantees.5 Red entries are particularly concerning. ECC stealing
has no storage or performance overheads, but it comes at the cost
of reliability—sacrificing error correction, having high SDC risk, or
both. In comparison, a tag carve-out can support greater levels of
security without reliability concerns. However, the tag carve-out
does so with storage and performance overheads. By leveraging
the ECC redundancy, Implicit Memory Tagging can scale to tag
sizes that are costly for prior memory tagging approaches. Implicit
Memory Tagging is able to preserve the performance benefits of
ECC stealing without its reliability degradation, while also avoiding
the storage and performance overheads of the tag carve-out.

Note that the ARMMTE configuration tags memory at a TG=16B
granularity whereas ECC stealing and IMT must match the 32B
GPU ECC granularity. Using TG=32B can cause memory footprint
bloat for < 32B allocations, but GPU applications do not tend to
have an abundance of small allocations and this does not appear to
be of concern. Over the workloads we evaluate, significant bloat is
seen only in programs with tiny memory footprints (for which high
memory footprint bloat is acceptable). Workloads that use ≤ 1MB
of total memory see a harmonic mean footprint bloat of 5.23%, with
a maximum of 50%. Workloads that use >1MB of memory see only
a 0.21% average footprint bloat, with a maximum of 1.8%.

5.1 Methodology and Benchmarks
We evaluate the performance overheads of the tag carve-out on an
NVIDIA GV100 GPU using the NVIDIA Architectural Simulator
(NVAS) [71]. We carve out 1GB of the 32GB total physical mem-
ory for the ARM-MTE (TS=4-bit, TG=16B) and Iso-Security-10
5We denote these same-security configurations as iso-security. For instance,
iso-security-10 has the same security as IMT-10.

(TS=8-bit, TG=32B) configurations, and 2GB physical memory for
Iso-Security-16 (TS = 16-bit, TG= 32B). On an L2 cache miss, we
issue a parallel lock tag lookup request to the carve-out memory,
which is then cached in the L2 for potential future requests. Both
data and carve-out requests are satisfied by the L2 cache before
a response is sent to the L1 cache. We assume that the L1 and L2
caches have additional storage for per-cacheline lock tags and that
the datapaths from the L2 to the L1 are widened to transfer the tags
alongside the data. We evaluate 193 application traces from various
domains, including MLPerf [38, 52], high performance computing
and sparse linear algebra workloads (e.g., [30, 34, 54, 57, 69, 72]
among others), and the STREAM microbenchmark.

We analyze the reliability of ECC stealing and IMT using software
decoders. Random data corruption is estimated using 1e8 randomly-
generated errors; all other error patterns are exhaustively evaluated.
We estimate the hardware overheads of AFT-ECC using Verilog
designs synthesized by the Synopsys toolchain [66] with a 16nm in-
dustrial technology library. Hardware area and delay are estimated
through standard-cell synthesis and static timing analysis.
Memory tagging security guarantees depend on the number of

unique tags and the algorithm used to retag objects [6, 50]. Implicit
Memory Tagging is allocator-agnostic, and we evaluate security
using the retagging schemes of two existing ARM MTE memory
allocators. The GNU C Library (glibc) allocator [17] assigns purely
random tags to each memory allocation [10]. On the other hand,
Scudo [36], the default system allocator in Android 11, is further
constrained to assign random odd or even tags based on the order
of memory objects, so that adjacent objects always receive different
tags [63]. The ISA instructions that tag and clear memory may
reserve tags for other uses; this evaluation assumes that two tags
are reserved, as with SPARC ADI [35].

Implicit Memory Tagging: No-Overhead Memory Safety Using Alias-Free Tagged ECC ISCA ’23, June 17–21, 2023, Orlando, FL, USA

-10%
0%

10%
20%
30%
40%
50%

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

1
5

6

1
6

1

1
6

6

1
7

1

1
7

6

1
8

1

1
8

6

1
9

1S
lo

w
d

o
w

n
 (

%
)

Workload #

Tag Carve-Out (TS=8b, TG=32B) Tag Carve-Out (TS=14b, TG=32B)

MLPerf
HPC & Sparse Linear Algebra (HPC+SLA)

Stream

(a) Slowdown Across Workloads

-10%
0%

10%
20%
30%
40%
50%

M
L

P
er

f

H
P

C
+

S
L

A

S
T

R
E

A
M

A
v
e.

 S
lo

w
d

o
w

n
 (

H
M

ea
n

)

Max (◆)

(b) Average/Max

0
128
256
384
512
640
768
896
1024

-10%
0%

10%
20%
30%
40%
50%
60%
70%

D
R

A
M

 B
/W

 (
M

B
/s

)

S
lo

w
d

o
w

n
 /

 B
lo

at
 (

%
)

All Workloads, Sorted by % Slowdown

 % Slowdown

 % Read Bloat

 DRAM B/W

Outlier Bloat (114%)

(c) Analysis of the Low-Tag-Storage Carve-Out Slowdowns (Across All Workloads)

Figure 8: Simulation results showing the performance overheads of tag carve-out based memory tagging.

5.2 Performance Evaluation
Figure 8 shows the performance impact of the tag carve-out base-
lines over 193 different workloads. The tag carve-out can reduce the
performance of some workloads by requiring redundant tag mem-
ory requests and additional pressure on on-chip caches to store and
access the cached tags. Performance overheads depend on the re-
quired tag storage; we show a low-tag-storage option representing
the ARMMTE (TS=4b, TG=16B) or Iso-Security-10 (TS=8b, TG=32B)
configurations, and a high-tag-storage option for Iso-Security-16
(TS=16b, TG=32B). Overheads are modest, on average, and they
resemble those reported for the recent GPU tag carve-out imple-
mentation LAK [75]. The harmonic mean slowdown across MLPerf
workloads is 1.8/2.3% (low-tag-storage/high-tag-storage). Similarly,
the HPC and Sparse Linear Algebra workloads suffer 3.7/5.8% av-
erage slowdowns, and there are 3.5/6.8% average slowdowns for
the STREAM microbenchmarks. Overheads are larger for memory-
bandwidth-bound programs and those with fine-grained random
access patterns, with maximum slowdowns of 14/21% for MLPerf,
32/43% for HPC+SLA, and 4/7% for STREAM.

Figure 8c further analyses the low-tag-storage slowdowns by also
plotting the percent read bloat due to memory tagging, and the aver-
age DRAM bandwidth used by the program. Slowdowns grow with
either increasing read bloat or for bandwidth-constrained programs,
and especially if both are present. The most severe slowdowns are
in HPC workloads LAAMPS [57] and AMBER18 [34], which use many
fine-grained memory accesses and also have high memory band-
width demands.

5.3 Reliability Evaluation
Figure 9 shows the SDC probability for different error-detecting
codes (R=1–8 bits) a SEC code (R=9 bits), and SEC-DED codes
(R=10–16 bits). Two error patterns are shown: (1) random corrup-
tion, and (2) 3-bit errors, which have disproportionate SDC risk for
SEC-DED codes. These results are collected by selecting a random
minimum-weight all-odd-column code for each of the SEC-DED

ECCs, and by selecting a random H matrix for the SEC code.6 Both
error-detecting and error-correcting codes suffer from a ∼2× higher
silent data corruption rate against random corruption for each bit
lost. The behavior of 3-bit errors is slightly more complicated, but
it is still near a 2× reduction.7 Intuitively, this leads to the reliabil-
ity penalty of ECC stealing—for example, if we steal 4-bits of the
R=16 GPU ECC to perform memory tagging (like the SPARC ADI
configuration), the SDC risk is amplified by 15.8×. Supporting a
large tag through ECC stealing sacrifices error correction, which
is highly undesirable due to availability concerns, and it also re-
sults in significant reliability degradations. Both Iso-Security-10
and Iso-Security-16 steal enough bits to only leave a single bit for
parity. This results in a 1.92×/120× higher SDC risk than IMT for
Iso-Security-10 and Iso-Security-16, respectively.

0%
10%
20%
30%
40%
50%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
D

C
 P

ro
b

ab
il

it
y
 (

%
)

Number of Check-Bits (R)

Random (Detect-Only) Random (SEC-DED) 3b (SEC-DED)

Figure 9: The SDC probability of error-detecting and
correcting codes with varying redundancies.

Table 2 shows the IMT behavior using different error patterns.
AFT-ECC does not change the reliability characteristics of the un-
derlying SEC-DED ECC code. As expected, both the 10 and 16-bit
SEC-DED codes maintain correction of 1-bit data errors and they de-
tect all 2-bit data errors. SEC-DED codes tend to have a greater SDC
6There is no all-odd-weight H matrix possible for the SEC code (R=9).
7One exception is when going from R = 10 to R = 9, because at R = 9 only error
correction is possible. SEC codes do not suffer from the same odd-weight error issues
as SEC-DED codes, and thus the 3-bit error probability of the SEC code is slightly
better than that of the R=10 SEC-DED code.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Michael B. Sullivan, Mohamed Tarek Ibn Ziad, Aamer Jaleel, and Stephen W. Keckler

Table 2: The Per-Error-Pattern Behavior of AFT-ECC.
CE/DE=Corrected/Detected Error; SDC=Silent Data Corrupt.

IMT-10 IMT-16

Redundancy 10b 16b
Tag Size (TS) 9b 15b

Pattern CE DE SDC CE DE SDC

Tag Corrupt 0% 100% 0% 0% 100% 0%
1b Data 100% 0% 0% 100% 0% 0%
2b Data 0% 100% 0% 0% 100% 0%
3b Data 0% 47.53% 52.47% 0% 95.05% 4.952%
4b Data 0% 99.80% 0.001995% 0% 99.98% 0.0001841%
Rand. Data∗ 0% 73.92% 25.98% 0% 99.58% 0.4154%
∗Also equivalent to a simultaneous tag mismatch and data error.

risk for odd-weight data errors than even-weight ones, as is evident
from the DE and SDC probabilities. IMT detects all corrupted tags
due to its alias-free tag submatrix. Even-weight ≥ 2b data errors
are misattributed as TMMs (unless precise driver-side diagnosis
is performed),8 while odd-weight multi-bit errors are reported as
DUEs. In the rare event of a simultaneous tag mismatch and data
error, the behavior is the same as with random data corruption.

5.4 Security Evaluation
Memory tagging security increases with the number of unique valid
tags, with a detection rate of 100%– 100%

Num.Tags . IMT allows for large
tags to be used without efficiency or resilience concerns—IMT-10
supports a 9-bit tag, and IMT-16 a 15-bit tag. These large tags result
in a 36× (IMT-10) or 2340× (IMT-16) lower misdetection probability
than that of ARM MTE and SPARC ADI with 4-bit tags.

The precise memory tagging security guarantees depend on the
algorithm used to retag objects. Implicit Memory Tagging provides
98.804% (IMT-10) or 99.997% (IMT-16) detection of memory safety
violations using the retagging scheme of the glibc allocator [10, 17],
up from 92.857% for the industry baselines. The Android Scudo
allocator [36] is designed with slightly different tradeoffs. It assigns
alternating odd and even tags to adjacent objects, leading to a 100%
detection rate against adjacent buffer overflows.9 However, this
comes at a 2× misdetection penalty against non-adjacent buffer
overflows. IMT-10 and IMT-16 still provide strong probabilistic secu-
rity guarantees of 99.608% and 99.994%, respectively. The industry
baselines suffer from worse absolute security degradation, only
providing 85.714% detection using the Scudo memory allocator.

5.5 Hardware Overheads
Figure 10 shows the SEC-DED decoder hardware. The decoder gen-
erates a syndrome by XORing the encoded data with the received
check-bits. For single-bit errors, the matching H column bit is cor-
rected, while a DUE is raised if no match is found. IMT/AFT-ECC
widen the encoder with TS new columns and introduce additional
8This behavior is because IMT uses the maximum tag size for 32B data. With a smaller-
than-maximum tag, IMT would have <100% TMMs for even-weight errors—each bit
of TS reduction would decrease the even-weight-error misattribution risk by ∼2×.
9This 100% security guarantee assumes that the attacker cannot change the key tag
bits. If they can, the approach provides the same probabilistic detection as against
non-adjacent buffer overflows.

Form Outputs

R bits

R bits

K bits

Correct Data DUE/TMM?DCE?

Data Check-Bits

Encoder

H Col. Match

Key Tag

Syndrome

Syndrome

Figure 10: The hardware for a SEC-DED decoder with the
minor changes needed for IMT/AFT-ECC highlighted.

outputs to the decoder. Table 3 revealsminimal hardware overheads—
the hardware additions correspond to <200 added AND2 gates
worth of area per encoder and <400 per decoder. IMT/AFT-ECC
add no delay, as TTS introduces only two bits per row, which does
not force another level in the encoder’s XOR tree structure.

6 OTHER RELATEDWORK
GPUShield [33] uses the GPU compiler and driver to craft a per-
kernel allocation bounds table that is indexed by hardware using
the upper pointer bits to validate each memory access. Although
both IMT and GPUShield utilize upper pointer bits for memory
safety, their approaches differ and IMT offers distinct advantages.
IMT avoids extensive compiler modifications and it can protect
pre-compiled third-party libraries without source code access. IMT
does not require a new on-chip cache hierarchy or substantial hard-
ware modifications, and it offers temporal as well as spatial safety
guarantees. IMT allows unlimited allocations, while GPUShield is
restricted by table size—it only gives a single table entry to the
device-side heap (for dynamic per-thread allocations [46]) for this
reason. While the performance overheads of GPUShield are low,
those of IMT are zero and there is a quantitative benefit for some
programs. We simulate our workloads with a tagged base-and-
bounds approach somewhat similar to GPUShield (with no static
bounds checking), and find that 40 of the workloads suffer from
> 0.5% slowdown. Among these workloads, there is a harmonic
mean slowdown of 0.96% and a maximum slowdown of 14%.
Previous research [26, 50] employs tree-like structures to in-

crease common-case tag cache hit rates [26] or enlarge average
tag sizes [50]. IMT supports large tags without extra storage, while
avoiding the performance overheads and design complexity of tree
traversal on memory accesses.
LAK [75] proposes a performant tag carve-out organization for

GPUs. Our tag carve-out baseline is similar to LAK, and we observe
similar performance with memory-intensive workloads. IMT has
storage and performance benefits over such tag carve-out designs.
SafeMem [51] uses ECC poisoning to provide trip-wire-based

memory safety. Like IMT, it leverages ECC error detection to func-
tion with little-to-no performance overheads. However, it lacks
protection against non-adjacent buffer overflows.

Implicit Memory Tagging: No-Overhead Memory Safety Using Alias-Free Tagged ECC ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Table 3: Hardware Overheads of IMT/AFT-ECC.

Unit Area (AND2 / +%) Delay (ns / +%)

Encoders

SEC-DED Encoder (10b) 2406 / —--— 0.12 / ---
AFT-ECC Encoder (10b) 2559 / +6.48% 0.12 / ---
SEC-DED Encoder (16b) 1483 / —--— 0.10 / ---
AFT-ECC Encoder (16b) 1639 / +10.5% 0.10 / ---

Decoders

SEC-DED Decoder (10b) 4109 / —--— 0.23 / ---
AFT-ECC Decoder (10b) 4296 / +4.56% 0.23 / ---
SEC-DED Decoder (16b) 4582 / —--— 0.22 / ---
AFT-ECC Decoder (16b) 4967 / +8.41% 0.22 / ---

MUSE ECC [37] uses residue-code error correction to chipkill-
protect DDR4 and DDR5 memories with less redundancy than
Reed-Solomon codes. They then use the leftover ECC storage for
memory tags, at the expense of error detection coverage. This ap-
proach is akin to ECC stealing, since each bit of saved redundancy
could also be used to reduce the SDC risk of MUSE ECC by ∼2×.
If AFT-ECC were sufficiently modified to work with MUSE ECC,
it could be used to implicitly store the tag bits while using the full
redundancy for superior error detection.

7 DISCUSSION & FUTUREWORK
7.1 Support for Other ECCs
This paper considers SEC-DED ECC, which is purportedly used
for GPU DRAM, caches, and register files [1, 42]. Structured large-
granularity errors are also important—for instance, neutron beam
testing experiments report byte errors to be the most common
multi-bit error in modern DRAM [64], and burst errors as the most
common multi-bit error pattern in SRAM [41]. Thus, an extension
of Alias-Free Tagged ECC to other ECC codes (such as symbol-
based ECC or burst-correcting ECC) is an area of future research. It
is trivial to support a TS within the correction capabilities of a short-
ened code, but support for a large maximum-length tag should also
be possible with proper code design. Analysis of tag size bounds
and AFT-ECC construction procedures with other ECC codes is left
for future work.

7.2 IMT on Other Platforms
IMT can fundamentally be applied to CPUs or other accelerators
with an ECC-protected memory hierarchy, but some challenges
must be carefully addressed during adoption. CPUs often use symbol-
based chipkill ECC [27] to tolerate an entire failing DRAM device;
this is an area of future AFT-ECC work. Using IMT alongside hard-
ware memory prefetchers will require careful organization. Some
CPUs protect the write-through L1 cache with parity only and
rely on L2 data replication for correction [65, 68], unlike the exclu-
sive GPU shared memory scratchpad that requires error correction.
Hence, extra L1 cache redundancy may be needed for IMT on CPUs.
Finally, small allocations are relatively more common on CPUs
than GPUs, and ECC codewords are often at a larger 64B cacheline
granularity—this could lead to significant memory fragmentation

from tagging at the cacheline granularity. Because of such differ-
ences, the detailed evaluation of IMT on other computing platforms
is left for future work.

7.3 IMT with Improved Memory Allocators
Implicit Memory Tagging optimizes the storage, movement, and
checking of the lock tag, which are the primary sources of memory
tagging overheads. Accordingly, this paper does not cover improve-
ments to the memory tagging algorithm, itself. IMT allows for
efficient implementation of a large tag size, which could enable
further flexibility in the memory allocator design. For instance, a
modified allocator might guarantee deterministic detection up to
a certain number of live allocations, or guarantee use-after-free
detection until a memory location is reallocated a certain number of
times, without prohibitive detection degradation for non-adjacent
buffer overflows. Improved memory allocators that leverage the
large IMT tag is an area of future innovation.

7.4 Other Uses for Alias-Free Tagged ECC
Tags for Low-Cost DRAMCaches:Alias-Free Tagged ECC could
perform DRAM cache tag checking alongside regular DRAM reads.
The ability to associate a tag with each 32B memory location would
allow for fine-grained DRAM cachelines without any tag storage
overheads. This could be useful for large-footprint workloads with
random accesses, such as graph analytics. However, this technique
may have some limitations due to the AFT-ECC constraints. For
example, only a write-through DRAM cache [61] might be sup-
ported (without precise TMM diagnosis), since a dirty write-back
tag cannot be safely extracted from an AFT-ECC codeword without
risking SDC for misattributed multi-bit errors.

Bulk Cache Invalidation: Bulk invalidation is used in the GPU
L1 for software coherence. One downside of bulk invalidation is
the latency of the operation, especially as cache sizes get large (or
DRAM caches are used). Alias-Free Tagged ECC could be used to
implement an invalidation-epoch-counting tag that considers tag
mismatches to be invalid cache entries. This reduces the need to
crawl the cache to once every 2TS bulk invalidations. A similar idea
requiring additional cache meta-data is described in CARVE [74].
AFT-ECC could achieve the same behavior without cache storage.

8 CONCLUSION
This paper describes a novel class of error codes and an applica-
tion of these codes for no-overhead memory tagging. Alias-Free
Tagged ECC (AFT-ECC) embeds a meta-data tag in the ECC check-
bits, unambiguously identifying tag mismatches while preserving
single-bit data error correction. Implicit Memory Tagging (IMT)
uses Alias-Free Tagged ECC to check for the equivalence of a large
memory tag in addition to detecting and correcting data errors. We
apply IMT to GPUs, and demonstrate that it outperforms alternative
hardware-accelerated memory tagging approaches in performance,
security, and reliability.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback. We
appreciate the paper discussions we have had with Adam Zabrocki,
Nirmal Saxena,MarkHairgrove, and Siddhartha Chhabra at NVIDIA.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Michael B. Sullivan, Mohamed Tarek Ibn Ziad, Aamer Jaleel, and Stephen W. Keckler

REFERENCES
[1] Advanced Micro Devices (AMD), Inc. 2012. AMD Graphics Cores Next (GCN)

Architecture. Advanced Micro Devices (AMD), Inc. https://www.techpowerup.
com/gpu-specs/docs/amd-gcn1-architecture.pdf

[2] Advanced Micro Devices (AMD), Inc. 2015. BIOS and Kernel Developer’s Guide
(BKDG) for AMD Family 15h Models 30h-3Fh Processors. Advanced Micro Devices
(AMD), Inc. Publication #49125 Rev 3.06.

[3] Advanced Micro Devices (AMD), Inc. 2022. AMD EPYC 9004 Series Architecture
Overview. https://www.amd.com/system/files/documents/58015-epyc-9004-tg-
architecture-overview.pdf Publication #58015.

[4] Arm Ltd. 2021. Armv8.5-A Memory Tagging Extension. Arm Ltd.
https://developer.arm.com/-/media/Arm%20Developer%20Community/
PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf

[5] Arm Ltd. 2022. Arm Architecture Reference Manual: For A-Profile Architecture.
Arm Ltd. https://developer.arm.com/documentation/ddi0487/ia Version I.A,
pp. 5219–5230.

[6] Joe Bialek, Ken Johnson, Matt Miller, and Tony Chen. 2020. Security Analysis
of Memory Tagging. https://github.com/microsoft/MSRC-Security-Research/
raw/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf

[7] Esha Choukse, Michael B. Sullivan, Mike O’Connor, Mattan Erez, Jeff Pool,
David Nellans, and Stephen W. Keckler. 2020. Buddy Compression: Enabling
Larger Memory for Deep Learning and HPC Workloads on GPUs. In Proceedings
of the International Symposium on Computer Architecture (ISCA). 926–939.

[8] Bang Di, Jianhua Sun, and Hao Chen. 2016. A Study of Overflow Vulnerabilities
on GPUs. In Proceedings of the International Conference on Network and Parallel
Computing (NPC). 103–115.

[9] Bang Di, Jianhua Sun, Hao Chen, and Dong Li. 2021. Efficient Buffer Overflow
Detection on GPU. IEEE Transactions on Parallel Distributed Systems 32, 5 (2021),
1161–1177. https://doi.org/10.1109/TPDS.2020.3042965

[10] Richard Earnshaw. 2020. Add AARCH64-Specific Files for Memory Tag-
ging Support. https://sourceware.org/git/?p=glibc.git;a=commit;h=
d27f0e5d889f4bf4a796fe2a883b2f264bf40c12

[11] Christopher Erb and Joseph L. Greathouse. 2018. ClARMOR: A Dynamic Buffer
Overflow Detector for OpenCL Kernels. In Proceedings of the International
Workshop on OpenCL (IWOCL). 1–2.

[12] Eiji Fujiwara. 2006. Code Design for Dependable Systems: Theory and Practical
Application. Wiley-Interscience.

[13] Richard Henry Gumpertz. 1981. Error Detection with Memory Tags. Ph.D.
Dissertation. Carnegie Mellon University, Pittsburgh, PA, USA.

[14] Richard Henry Gumpertz. 1983. Combining Tags with Error Codes. In Proceedings
of the International Symposium on Computer Architecture (ISCA). 160–165.

[15] M.Y. Hsiao. 1970. A Class of Optimal Minimum Odd-Weight-Column SEC-DED
Codes. IBM Journal of Research and Development 14, 4 (1970), 395–401.

[16] John Hubbard. 2017. Using HMM to Blur the Lines between
CPU and GPU Programming. GPU Technology Conference (GTC).
http://on-demand.gputechconf.com/gtc/2017/presentation/s7764_john-
hubbardgpus-using-hmm-blur-the-lines-between-cpu-and-gpu.pdf

[17] Free Software Foundation Inc. 2023. The GNU C Library Reference Manual, for
version 2.37. https://www.gnu.org/software/libc/manual/html_node/The-GNU-
Allocator.html

[18] Intel Corp. 2017. 5-Level Paging and 5-Level EPT. https://software.intel.com/
content/www/us/en/develop/download/5-level-paging-and-5-level-ept-white-
paper.html Document Number: 335252-002, Revision 1.1.

[19] JEDEC Solid State Technology Association 2013. Graphics Double Data Rate
(GDDR5) SGRAM Standard, JESD212B. JEDEC Solid State TechnologyAssociation.

[20] JEDEC Solid State Technology Association 2015. Graphics Double Data
Rate (GDDR5X) SGRAM Standard, JESD232. JEDEC Solid State Technology
Association.

[21] JEDEC Solid State Technology Association 2015. High Bandwidth Memory (HBM)
DRAM, JESD256A. JEDEC Solid State Technology Association.

[22] JEDEC Solid State Technology Association 2021. Graphics Double Data Rate 6
(GDDR6) SGRAMStandard, JESD250C. JEDEC Solid State TechnologyAssociation.

[23] JEDEC Solid State Technology Association 2022. High Bandwidth Memory DRAM
(HBM3), JESD238. JEDEC Solid State Technology Association.

[24] Samuel Jero, Nathan Burow, Bryan Ward, Richard Skowyra, Roger Khazan,
Howard Shrobe, and Hamed Okhravi. 2022. TAG: Tagged Architecture Guide.
Comput. Surveys (May 2022).

[25] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza. 2018.
Dissecting the NVIDIA Volta GPU Architecture via Microbenchmarking. arXiv
preprint arXiv:1804.06826 (April 2018), 17–24.

[26] Alexandre Joannou, Jonathan Woodruff, Robert Kovacsics, Simon W. Moore,
Alex Bradbury, Hongyan Xia, Robert N.M. Watson, David Chisnall, Michael
Roe, Brooks Davis, Edward Napierala, John Baldwin, Khilan Gudka, Peter G.
Neumann, Alfredo Mazzinghi, Alex Richardson, Stacey Son, and A. Theodore
Markettos. 2017. Efficient Tagged Memory. In Proceedings of the International
Conference on Computer Design (ICCD). 641–648.

[27] Jungrae Kim, Michael B Sullivan, and Mattan Erez. 2015. Bamboo ECC: Strong,
Safe, and Flexible Codes for Reliable Computer Memory. In Proceedings of the
International Symposium on High Performance Computer Architecture (HPCA).
101–112.

[28] Jungrae Kim, Michael B. Sullivan, Sangkug Lym, and Mattan Erez. 2016.
All-Inclusive ECC: Thorough End-to-End Protection for Reliable Computer
Memory. In Proceedings of the International Symposium on Computer Architecture
(ISCA). 622–633.

[29] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping Bits in Memory
without Accessing Them: An Experimental Study of DRAM Disturbance Errors.
In Proceedings of the International Symposium on Computer Architecture (ISCA).
361–372.

[30] KTH Royal Institute of Technology. 2023. GROMACS. NVIDIA GPU Cloud.
https://catalog.ngc.nvidia.com/orgs/hpc/containers/gromacs

[31] Albert Kwon, Udit Dhawan, Jonathan M. Smith, Thomas F. Knight, and Andre
DeHon. 2013. Low-Fat Pointers: Compact Encoding and Efficient Gate-Level
Implementation of Fat Pointers for Spatial Safety and Capability-Based Security.
In Proceedings of the SIGSAC Conference on Computer and Communications
Security. 721–732.

[32] Hugo Landau. 2022. The Talos II, Blackbird POWER9 Systems Support Tagged
Memory. https://www.devever.net/~hl/power9tags

[33] Jaewon Lee, Yonghae Kim, Jiashen Cao, Euna Kim, Jaekyu Lee, and Hyesoon
Kim. 2022. Securing GPU via Region-Based Bounds Checking. In Proceedings
of the International Symposium on Computer Architecture (ISCA). 27–41.

[34] Tai-Sung Lee, David S Cerutti, Dan Mermelstein, Charles Lin, Scott LeGrand,
Timothy J Giese, Adrian Roitberg, David A Case, Ross C Walker, and Darrin M
York. 2018. GPU-Accelerated Molecular Dynamics and Free Energy Methods
in Amber18: Performance Enhancements and New Features. Journal of Chemical
Information and Modeling 58, 10 (2018), 2043–2050.

[35] Linux Kernel Organization 2019. Application Data Integrity (ADI). Linux Kernel
Organization. https://www.kernel.org/doc/Documentation/sparc/adi.rst

[36] LLVM Project. 2023. Scudo Hardened Allocator. https://llvm.org/docs/
ScudoHardenedAllocator.html

[37] Evgeny Manzhosov, Adam Hastings, Meghna Pancholi, Ryan Piersma, Mohamed
Tarek Ibn Ziad, and Simha Sethumadhavan. 2022. Revisiting Residue Codes
for Modern Memories. In Proceedings of the International Symposium on
Microarchitecture (MICRO). 73–90.

[38] Peter Mattson, Christine Cheng, Gregory Diamos, Cody Coleman, Paulius
Micikevicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor
Bittorf, et al. 2020. MLPerf Training Benchmark. Proceedings of Machine Learning
and Systems 2 (2020), 336–349.

[39] Andrea Miele. 2016. Buffer Overflow Vulnerabilities in CUDA: A Preliminary
Analysis. Journal of Computer Virology and Hacking Techniques 12, 2 (2016),
113–120.

[40] M Miller. 2019. Trends, Challenges, and Strategic Shifts in the Software Vulner-
ability Mitigation Landscape. Blue Hat IL. https://github.com/microsoft/MSRC-
Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-
%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%
20software%20vulnerability%20mitigation.pdf

[41] A. Neale and M. Sachdev. 2016. Neutron Radiation Induced Soft Error Rates for
an Adjacent-ECC Protected SRAM in 28nm CMOS. IEEE Transactions on Nuclear
Science 63, 3 (June 2016), 1912–1917.

[42] NVIDIA Corp. 2016. NVIDIA Tesla P100—The Most Advanced Data Center
Accelerator Ever Built Featuring Pascal GP100, the World’s Fastest GPU. NVIDIA
Corp. http://www.nvidia.com/object/pascal-architecture-whitepaper.html

[43] NVIDIA Corp. 2019. NVIDIA T4 Tensor Core GPU. NVIDIA Corp.
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-
t4/t4-tensor-core-datasheet-951643.pdf

[44] NVIDIA Corp. 2021. NVIDIA A100 GPU Memory Error Management. NVIDIA
Corp. https://docs.nvidia.com/deploy/a100-gpu-mem-error-mgmt/index.html

[45] NVIDIA Corp. 2022. Dynamic Page Retirement. NVIDIA Corp.
https://docs.nvidia.com/deploy/dynamic-page-retirement/index.html

[46] NVIDIA Corp. 2023. CUDA C Programming Guide, Section 10.34: Dynamic
Global Memory Allocation and Operations. NVIDIA Developer Zone.
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf Release
12.1, pages 228–231.

[47] Oracle Corp. 2015. adi_memset Documentation. Oracle Corp.
https://docs.oracle.com/cd/E86824_01/html/E54766/adi-memset-3c.html

[48] Oracle Corp. 2015. Hardware-Assisted Checking Using Silicon Secured Memory
(SSM). Oracle Corp. https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.
html

[49] Sang-Ok Park, Ohmin Kwon, Yonggon Kim, Sang Kil Cha, and Hyunsoo Yoon.
2021. Mind Control Attack: Undermining Deep Learning With GPU Memory
Exploitation. Computers & Security 102 (2021), 102–115.

[50] Aditi Partap and Dan Boneh. 2022. Memory Tagging: A Memory Efficient
Design. arXiv preprint arXiv:2209.00307 (Nov. 2022), 1–16.

https://www.techpowerup.com/gpu-specs/docs/amd-gcn1-architecture.pdf
https://www.techpowerup.com/gpu-specs/docs/amd-gcn1-architecture.pdf
https://www.amd.com/system/files/documents/58015-epyc-9004-tg-architecture-overview.pdf
https://www.amd.com/system/files/documents/58015-epyc-9004-tg-architecture-overview.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/documentation/ddi0487/ia
https://github.com/microsoft/MSRC-Security-Research/raw/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf
https://github.com/microsoft/MSRC-Security-Research/raw/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf
https://doi.org/10.1109/TPDS.2020.3042965
https://sourceware.org/git/?p=glibc.git;a=commit;h=d27f0e5d889f4bf4a796fe2a883b2f264bf40c12
https://sourceware.org/git/?p=glibc.git;a=commit;h=d27f0e5d889f4bf4a796fe2a883b2f264bf40c12
http://on-demand.gputechconf.com/gtc/2017/presentation/s7764_john-hubbardgpus-using-hmm-blur-the-lines-between-cpu-and-gpu.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7764_john-hubbardgpus-using-hmm-blur-the-lines-between-cpu-and-gpu.pdf
https://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html
https://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html
https://software.intel.com/content/www/us/en/develop/download/5-level-paging-and-5-level-ept-white-paper.html
https://software.intel.com/content/www/us/en/develop/download/5-level-paging-and-5-level-ept-white-paper.html
https://software.intel.com/content/www/us/en/develop/download/5-level-paging-and-5-level-ept-white-paper.html
https://catalog.ngc.nvidia.com/orgs/hpc/containers/gromacs
https://www.devever.net/~hl/power9tags
https://www.kernel.org/doc/Documentation/sparc/adi.rst
https://llvm.org/docs/ScudoHardenedAllocator.html
https://llvm.org/docs/ScudoHardenedAllocator.html
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
http://www.nvidia.com/object/pascal-architecture-whitepaper.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://docs.nvidia.com/deploy/a100-gpu-mem-error-mgmt/index.html
https://docs.nvidia.com/deploy/dynamic-page-retirement/index.html
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.oracle.com/cd/E86824_01/html/E54766/adi-memset-3c.html
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html

Implicit Memory Tagging: No-Overhead Memory Safety Using Alias-Free Tagged ECC ISCA ’23, June 17–21, 2023, Orlando, FL, USA

[51] Feng Qin, Shan Lu, and Yuanyuan Zhou. 2005. SafeMem: Exploiting ECC-Memory
for Detecting Memory Leaks and Memory Corruption During Production Runs.
In Proceedings of the International Symposium on High Performance Computer
Architecture (HPCA). 291–302.

[52] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, et al. 2020. MLPerf Inference Benchmark. In Proceed-
ings of the International Symposium on Computer Architecture (ISCA). 446–459.

[53] Minsoo Rhu, Michael Sullivan, Jingwen Leng, and Mattan Erez. 2013. A
Locality-Aware Memory Hierarchy for Energy-Efficient GPU Architectures. In
Proceedings of the International Symposium on Microarchitecture (MICRO). 86–98.

[54] Nikolay Sakharnykh. 2016. High-Performance Geometric Multi-Grid with GPU
Acceleration. https://developer.nvidia.com/blog/high-performance-geometric-
multi-grid-gpu-acceleration/

[55] Nikolay Sakharnykh. 2017. Unified Memory on Pascal and Volta. GPU
Technology Conference (GTC). http://on-demand.gputechconf.com/gtc/2017/
presentation/s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-
volta.pdf

[56] Nikolay Sakharnykh. 2019. Memory Management on Modern GPU Architectures.
GPU Technology Conference (GTC). https://developer.download.nvidia.com/
video/gputechconf/gtc/2019/presentation/s9727-memory-management-on-
modern-gpu-architectures.pdf

[57] Sandia National Lab. 2023. LAAMPS. NVIDIA GPU Cloud. https:
//catalog.ngc.nvidia.com/orgs/hpc/containers/lammps

[58] N. Saxena, Chien Chen, R. Swami, H. Osone, S. Thusoo, D. Lyon, D. Chang, A.
Dharmaraj, N. Patkar, Y. Lu, and B. Chia. 1995. Error Detection and Handling in a
Superscalar, Speculative Out-of-Order Execution Processor System. In Proceedings
of the International Symposium on Fault-Tolerant Computing (FTCS). 464–471.

[59] Yiannakis Sazeides, Emre Özer, Danny Kershaw, Panagiota Nikolaou, Marios
Kleanthous, and Jaume Abella. 2013. Implicit-Storing and Redundant-Encoding-
of-Attribute Information in Error-Correction-Codes. In Proceedings of the
International Symposium on Computer Architecture (ISCA). 160–171.

[60] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad Tsyrklevich,
and Dmitry Vyukov. 2018. Memory Tagging and How It Improves C/C++
Memory Safety. arXiv preprint arXiv:1802.09517 (Feb. 2018), 1–14.

[61] Jaewoong Sim, Gabriel H Loh, Hyesoon Kim, Mike OConnor, and Mithuna
Thottethodi. 2012. A Mostly-Clean DRAM Cache for Effective Hit Speculation
and Self-Balancing Dispatch. In Proceedings of the International Symposium on
Microarchitecture (MICRO). 247–257.

[62] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert,
Per Larsen, and Michael Franz. 2019. SoK: Sanitizing for Security. In Proceedings
of the Symposium on Security and Privacy (SP). 1275–1295.

[63] Evgenii Stepanov, Kostya Serebryany, Peter Collingbourne, Mitch Phillips,
and Vitaly Buka. 2020. Memory Tagging in LLVM and Android. In LLVM
Developer Meeting. https://llvm.org/devmtg/2020-09/slides/Stepanov-
Memory_tagging_in_LLVM_and_Android.pdf

[64] Michael B. Sullivan, Nirmal Saxena, Mike O’Connor, Donghyuk Lee, Paul Racu-
nas, Saurabh Hukerikar, Timothy Tsai, Siva Kumar Sastry Hari, and Stephen W.
Keckler. 2021. Characterizing and Mitigating Soft Errors in GPU DRAM. In Pro-
ceedings of the International Symposium on Microarchitecture (MICRO). 641–653.

[65] Sun Microsystems 2008. OpenSPARC T2 System-on-Chip (SoC) Microarchitecture
Specification. Sun Microsystems.

[66] Synopsys Inc. 2022. Design Compiler T-2022.03-SP5.
[67] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal War

in Memory. In Proceedings of the Symposium on Security and Privacy (SP). 48–62.
[68] Joel M Tendler, J Steve Dodson, JS Fields, Hung Le, and Balaram Sinharoy. 2002.

POWER4 System Microarchitecture. IBM Journal of Research and Development
46, 1 (2002), 5–25.

[69] University of Illinois Urbana-Champaign. 2023. NAMD. NVIDIA GPU Cloud.
https://catalog.ngc.nvidia.com/orgs/hpc/containers/namd

[70] Victor Van der Veen, Nitish Dutt-Sharma, Lorenzo Cavallaro, and Herbert Bos.
2012. Memory Errors: The Past, the Present, and the Future. In Proceeding of
the Symposium on Research in Attacks, Intrusions, and Defenses (RAID). 86–106.

[71] Oreste Villa, Daniel Lustig, Zi Yan, Evgeny Bolotin, Yaosheng Fu, Niladrish Chat-
terjee, Nan Jiang, and David Nellans. 2021. Need for Speed: Experiences Building
a Trustworthy System-Level GPU Simulator. In Proceedings of the International
Symposium on High Performance Computer Architecture (HPCA). 868–880.

[72] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D Owens. 2016. Gunrock: A High-Performance Graph Processing Library
on the GPU. In Symposium on Principles and Practice of Parallel Programming
(PPoPP). 1–12.

[73] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In Proceedings of the USENIX Security
Symposium. 719–732.

[74] Vinson Young, Aamer Jaleel, Evgeny Bolotin, Eiman Ebrahimi, David Nellans,
and Oreste Villa. 2018. Combining HW/SW Mechanisms to Improve NUMA Per-
formance of Multi-GPU Systems. In Proceedings of the International Symposium
on Microarchitecture (MICRO). 339–351.

[75] Chaochao Zhang and Rui Hou. 2022. LAK: A Low-Overhead Lock-and-Key
Based Schema for GPU Memory Safety. In Proceedings of the International
Conference on Computer Design (ICCD). 705–713.

[76] Benjamin Zorn, Paul Hilffinger, Kinson Ho, and James Larus. 1987. SPUR Lisp.
Technical Report. https://www2.eecs.berkeley.edu/Pubs/TechRpts/1987/CSD-
87-373.pdf

https://developer.nvidia.com/blog/high-performance-geometric-multi-grid-gpu-acceleration/
https://developer.nvidia.com/blog/high-performance-geometric-multi-grid-gpu-acceleration/
http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9727-memory-management-on-modern-gpu-architectures.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9727-memory-management-on-modern-gpu-architectures.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9727-memory-management-on-modern-gpu-architectures.pdf
https://catalog.ngc.nvidia.com/orgs/hpc/containers/lammps
https://catalog.ngc.nvidia.com/orgs/hpc/containers/lammps
https://llvm.org/devmtg/2020-09/slides/Stepanov-Memory_tagging_in_LLVM_and_Android.pdf
https://llvm.org/devmtg/2020-09/slides/Stepanov-Memory_tagging_in_LLVM_and_Android.pdf
https://catalog.ngc.nvidia.com/orgs/hpc/containers/namd
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1987/CSD-87-373.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1987/CSD-87-373.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Basic Terminology
	2.2 Threat Model
	2.3 Memory Tagging
	2.4 GPU Memory Hierarchy
	2.5 Error Detecting and Correcting Codes
	2.6 Tagged ECC
	2.7 ECC in GPUs

	3 Alias-Free Tagged ECC
	3.1 Linear Codes and the Parity Check Matrix
	3.2 Tagged ECC
	3.3 Alias-Free Tagged ECC Code Construction
	3.4 Alias-Free Tag Size Limits
	3.5 Parity-Check Matrix Recommendations
	3.6 AFT-ECC Behavior and Constraints

	4 Implicit Memory Tagging
	4.1 Prior Approaches and Limitations
	4.2 Implicit Memory Tagging Design
	4.3 Software Interface and Precise Diagnosis
	4.4 IMT Configurations for GPU

	5 Evaluation
	5.1 Methodology and Benchmarks
	5.2 Performance Evaluation
	5.3 Reliability Evaluation
	5.4 Security Evaluation
	5.5 Hardware Overheads

	6 Other Related Work
	7 Discussion & Future Work
	7.1 Support for Other ECCs
	7.2 IMT on Other Platforms
	7.3 IMT with Improved Memory Allocators
	7.4 Other Uses for Alias-Free Tagged ECC

	8 Conclusion
	Acknowledgments
	References

