
Characterizing and Mitigating Soft Errors in GPU DRAM
Michael B. Sullivan
Nirmal Saxena
Mike O’Connor

misullivan@nvidia.com
nsaxena@nvidia.com
moconnor@nvidia.com

NVIDIA
Santa Clara, California, USA

Donghyuk Lee
Paul Racunas

Saurabh Hukerikar
donghyukl@nvidia.com
pracunas@nvidia.com
shukerikar@nvidia.com

NVIDIA
Santa Clara, California, USA

Timothy Tsai
Siva Kumar Sastry Hari
Stephen W. Keckler
timothyt@nvidia.com
shari@nvidia.com

skeckler@nvidia.com
NVIDIA

Santa Clara, California, USA

ABSTRACT
GPUs are used in high-reliability systems, including high-
performance computers and autonomous vehicles. Because GPUs
employ a high-bandwidth, wide-interface to DRAM and fetch each
memory access from a single DRAM device, implementing full-
device correction through ECC is expensive and impractical. This
challenge is compounded by worsening relative rates of multi-bit
DRAM errors and increasing GPU memory capacities. This paper
first presents high-energy neutron beam testing results for the
HBM2 memory on a compute-class GPU. These results uncovered
unexpected intermittent errors that we determine to be caused by
cell damage from the high-intensity beam. As these errors are an
artifact of the testing apparatus, we provide best-practice guidance
on how to identify and filter them from the results of beam testing
campaigns. Second, we use the soft error beam testing results to
inform the design and evaluation of system-level error protection
mechanisms by reporting the relative error rates and error patterns
from soft errors in GPU DRAM. We observe locality in the multi-
bit errors, which we attribute to the underlying structure of the
HBM2 memory. Based on these error patterns, we propose several
novel ECC schemes to decrease the silent data corruption risk by
up to five orders of magnitude relative to SEC-DED ECC, while
also reducing the number of uncorrectable errors by up to 7.87×.
We compare novel binary and symbol-based ECC organizations
that differ in their design complexity, hardware overheads, and
permanent error correction abilities, ultimately recommending two
promising organizations. These schemes replace SEC-DED ECC
with no additional redundancy, likely no performance impacts, and
modest area and complexity costs.
ACM Reference Format:
Michael B. Sullivan, Nirmal Saxena, Mike O’Connor, Donghyuk Lee,
Paul Racunas, Saurabh Hukerikar, Timothy Tsai, Siva Kumar Sastry Hari,
and Stephen W. Keckler. 2021. Characterizing and Mitigating Soft Errors in
GPU DRAM. In MICRO’21: 54th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’21), October 18–22, 2021, Virtual Event, Greece.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3466752.3480111

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480111

1 INTRODUCTION
Business-critical servers, datacenters, autonomous vehicles, and
high performance computing systems typically rely on commodity
hardware with error checking and correcting (ECC) codes applied to
large memory structures to increase hardware reliability. GPU accel-
eration in these systems is critical for high performance and energy
efficiency, making GPU resilience a priority. Modern compute-class
GPUs and accelerators, such as GPUs [3, 5, 11], Google TPU [51],
Fujitsu A64FX [21], and SiPearl Rhea [31] employ wide on-package
HBM2 memory to sustain high main memory bandwidths.

Main memory is the largest and most vulnerable storage struc-
ture in most systems, making effective DRAM ECC central to any
comprehensive error protection scheme. Memory DIMMs in most
CPU nodes are composed of narrow 4b wide DRAM devices, mean-
ing that soft errors in these memories are typically confined to the
4B of data coming from a single DRAM chip. Tailored “chipkill”
CPU ECC codes are able to detect and correct the data coming from
an entirely-faulty 4b DRAM device using the 12.5% of available ECC
redundancy, offering high soft error protection while remaining
oblivious to underlying error patterns [15, 39]. In contrast, GPU
memory is much wider (64b wide per HBM2 pseudo-channel), and
each memory entry is fetched from a single DRAM device, making
whole-device protection impossible without a prohibitively large
memory access granularity or additional redundancy. Understand-
ing the underlying data corruption patterns is therefore crucial for
HBM2 memory, as an effective ECC code must be tailored to detect
or correct the most prevalent multi-bit errors. GPUs reportedly
employ single-bit-error-correcting and double-bit-error-detecting
(SEC-DED) ECC for DRAM [2, 52], which we find to be subopti-
mal for HBM2. This paper demonstrates that tailoring the code to
the most prevalent multi-bit soft error patterns can provide vast
resilience improvements over SEC-DED ECC for GPUs.

This paper presents high-energy neutron beam testing results for
the HBM2 memory on a compute-class GPU with the primary goal
of tailoring error protection to the most prevalent soft error pat-
terns. Our neutron beam tests uncovered unexpected intermittent
errors in DRAM, however, that we determine to be caused by cell
damage from the high-intensity beam. We first provide guidance
for beam-testing campaigns on how to identify and filter out these
intermittent errors. This guidance is important for HBM2, as it re-
sides on-package and is forced in the beam, even if main memory is
not the intended target of study. Having filtered out the intermittent
errors from our results, we report the relative error rates and error
patterns from soft errors in GPU DRAM. We observe locality in the
multi-bit errors, which we attribute to the underlying structure of

https://doi.org/10.1145/3466752.3480111
https://doi.org/10.1145/3466752.3480111

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Sullivan et al.

the HBM2 memory. We then propose specific improvements over
SEC-DED ECC for GPU DRAM, vastly improving the uncorrectable
error rate and increasing resilience against silent data corruption
(SDC). The main contributions of our paper are:

• Beam Testing Guidance:We have identified a physical effect
called displacement damage as the cause of intermittent errors we
observe in beam-tested DRAM. Energetic radiation can physically
damage the DRAM access transistor, increasing cell leakage cur-
rent and reducing the retention time of the DRAM cell by orders
of magnitude. The weakened cells cause randomly-distributed
single-bit errors (up to several thousand per GPU), and they can
be separated from soft errors through post-processing or by en-
abling GPU DRAM ECC. Displacement damage does not happen
in the field, and thus the intermittent errors do not need to be
addressed by an error protection scheme.

• Soft Error Patterns: Our high-energy neutron beam tests show
soft errors in HBM2 to be rare but severe—∼31.5% of single event
upsets (SEUs) in device memory affect multiple bits in at least
one word. These severe errors likely originate in DRAM logic
structures, and the majority of these severe errors (∼75%) are
confined to a logically-contiguous byte in each memory word.
This tendency towards byte-aligned errors follows intuitively
from the observation that HBM2 is deeply hierarchical, with data
likely residing in mats with an 8b access granularity.

• Improved HBM2 ECC:We observe multi-bit DRAM errors to
be heavily structured and amenable to a tailored DRAM ECC
code. We investigate binary and symbol-based ECC codes, ulti-
mately proposing two organizations. DuetECC/TrioECC offers
a drop-in replacement for SEC-DED ECC, operating within the
same hardware footprint and maintaining single-bit and single-
pin correction. DuetECC and TrioECC both decrease the SDC risk
relative to SEC-DED, and they expose a correction/SDC trade-off
using a reconfigurable decoder. DuetECC decreases the SDC risk
by over three orders of magnitude. TrioECC performs more ag-
gressive correction, reducing the number of uncorrectable errors
by 7.87× and decreasing the SEC-DED silent data corruption
risk by two orders of magnitude. We also propose an alternate
symbol-based ECC code called SSC-DSD+, which further reduces
the SDC risk over DuetECC by two more orders of magnitude,
while simultaneously approaching the correction rate of TrioECC.
SSC-DSD+ is a promising organization if a larger departure from
SEC-DED ECC is permissible—it has a larger and slower decoder,
and it sacrifices the ability to correct permanent pin failures.

2 BACKGROUND
2.1 Neutron Beam Testing
Soft errors are non-destructive events that corrupt memory until
a following write. Such errors are concerning, as they pose a sig-
nificant risk of silent data corruption [8, 61]. Energetic neutrons
produced by cosmic rays are the dominant soft error cause in the
terrestrial environment. Neutron beam testing offers a way to per-
form accelerated testing to judge the terrestrial soft error rate and
error patterns [32]. Neutron beam tests have been performed on
GPUs and other accelerators in the past, with a focus on the logic
die [17, 46, 54]. In contrast, our focus in this paper is on the on-
package HBM2 memory of a GPU.

Slayman (2010)

GPU HBM2

DRAM Capacity

0

1

10

100

1,000

0 50 100 150 200 250P
er

-G
b
 E

rr
o

r
R

at
e

&
 M

em
o

ry

C
ap

ac
it

y
 (

N
o

rm
al

iz
ed

)

DRAM Process (nm)

Total

Multi

ൗ1 10

Multi-Bit Rate

(Boruki, 2008)}

Fig. 1: Historical neutron beam testing data and memory ca-
pacities over process generations. Exponential regressions
of the historical data are shown with dotted lines.

2.2 GPU DRAM Organization
Modern compute-class GPUs [3, 5, 11] rely on high-bandwidth
on-package HBM2 memory to support many concurrent DRAM
accesses. The minimum access granularity of HBM2 memory is
32B [36]. In this paper, we assume that GPUs also support a fine-
grained 32B accesses granularity; this is corroborated by prior mi-
crobenchmarking work on NVIDIA GPUs [34] as well as work that
shows fine-grained GPU accesses to be more performant for im-
portant workloads [57]. We refer to each 32B block in HBM2 as a
memory entry, such that each read fetches a single entry.

2.3 Soft Error Trends in DRAM
Trends over the past two decades have led to the situation where
DRAM errors are rare, but relatively broad and severe when they
occur. DRAM error rates have fallen during this time due to shrink-
ing memory technologies with roughly constant capacitance per
DRAM bitcell, meaning that the charge required to flip a bitcell is
constant but the chance of a cell strike has fallen with memory scal-
ing. The falling rate of per-bit errors has historically outweighed
the DRAM capacity increases, leading to a gently-decreasing overall
error rate.1 Figure 1 shows the historically-falling DRAM error rate
alongside the DRAM capacity increases and our measured HBM2
error rate. Prior neutron beam testing data (shown in blue) for older-
generation DRAM are taken from [60], and the DRAM capacities
are taken from a list of various DRAM vendors and generations [69].
Exponential regressions of the historical data are shown in dotted
lines; they demonstrate a decrease in the per-chip DRAM failure
rate that outpaces the increase in DRAM capacities.

Logic errors in DRAM have not scaled like those in bitcells—as
DRAM supply voltage has decreased, the rate of potentially-severe
non-bitcell DRAM errors has stayed roughly constant or increased
slowly [6, 60]. This makes the relative contribution of severe and
broad non-bitcell errors more pronounced [55]. We use the term
breadth to indicate the number of 32B memory entries that can be
affected by a single fault, and severity to indicate the number of
bits per entry that can be affected. Boruki et al. observe that the
non-bitcell upset rate stays within a two-order-of-magnitude range,

1With recent DRAM generations, the capacitance per bitcell is falling, meaning that
this historical decrease no longer holds [26].

Characterizing and Mitigating Soft Errors in GPU DRAM MICRO ’21, October 18–22, 2021, Virtual Event, Greece

and it does not show any strong trend with technology scaling [6];
we mark this range using a bracket to the right of Figure 1. We
overlay the GPU HBM2 error rate we measure through neutron
beam testing as a green circle, and the multi-bit error rate as a green
triangle. The low error rate of HBM2 and the high relative multi-bit
error rate are within expectations given the historical trends.

Field studies of large-scale systems have also reported high error
breadth and severity, both in server-class main memory [42, 62–64]
and inGPUmemory [16, 50, 66, 67]. Field studies differ fromneutron
beam testing in several regards. They contain error contributions
both from soft errors and from other sources, such as permanent
errors due to marginal memory devices that escape fabrication-time
testing. Field studies also cannot examine the rate or error pattern
of silent data corruption, since it is never present in the error logs.

2.4 The Structure of HBM2 Memory
Modern DRAM is complex and deeply hierarchical, with compo-
nents that can fail at multiple granularities and affect a varying
number of bits per memory entry. Each HBM2 stack is composed
of eight 512MB channels, each with separate data, control, and
power pins.2 Each HBM2 channel is split into 16 banks that share
the channel pins. DRAM is accessed by a split row and column
address—a row activation command brings 2KB of data from the
DRAM bit-cells into a bank-local row buffer, and following read
and write commands access one 32B column of the row buffer at
a time. There is not a single row buffer per bank, but rather each
bank is composed of 32 subarrays, each with its own row buffer. A
32B DRAM read draws all of its data from a single subarray, and
only one subarray is selected at a time. Each subarray is further
split into 32 data mats, each of which fills an 8b wide slice of the
2KB row buffer. The DRAM bit-cells reside within these data mats,
and each mat is composed of a 512 × 512 array of bits. Rows of the
mat are activated by local word lines and each bit of an activated
row is transmitted to the 512b mat-local row buffer slice through
a bitline. Each DRAM read selects an 8b column from each mat
through a local column mux.

2.5 Permanent DRAM Errors
Each HBM2 stack connects to the GPU through 1024 data wires
on a silicon interposer. Signals pass to and from the silicon in-
terposer through microbumps. The dimensions of the constituent
microbumps and wires are tiny [56], and single-pin permanent
failures are an important failure mode for HBM2 in the field. Pin
failures can develop due to cracking microbumps or marginal joint
defects, each of which can develop weeks or longer after the GPU
leaves the factory [37, 71]. Single-pin correction is therefore desir-
able, as it allows a GPU to gracefully degrade in the field, making
error diagnosis and the scheduling of GPU replacements less diffi-
cult and potentially reducing downtime. Accordingly, we take care
to preserve single-pin correction in some ECC schemes, despite the
fact that pin errors are not prevalent in our soft error patterns.

Field studies have also reported permanent non-pin errors with
patterns that are similar to those of soft errors [62–64]. While our

2To be more precise, each channel has separate through-silicon-vias (TSVs) that even-
tually lead to microbumps that are wired through an interposer to the GPU; we refer
to the TSV, microbump, and wire as a “pin.”

primary focus is on precisely quantifying the soft error risk, our
ECC improvements also give corresponding benefits for perma-
nent errors with similar patterns—for instance, byte detection and
correction are important for permanent local wordline failures.

2.6 Error Correcting Codes
An error checking and correcting (ECC) code detects and possibly
corrects errors using redundant values that are algorithmically gen-
erated from the protected data. An (N , K) code has N total symbols
with K information symbols and R = (N − K) check-symbols. We
consider ECC schemes that use binary symbols, 2b symbols, and 1B
symbols in this paper. The worst-case error detecting and correcting
capabilities of an ECC code are often characterized by the maximum
number of bytes or bits that it can detect and correct. An error that
is within the theoretical correction capabilities of an ECC code will
result in a detected-and-corrected error (DCE), and those that are
within the detection capability will be a detected-yet-uncorrected
error (DUE). Errors that exceed the theoretical coverage of a code
can either be detected (resulting in a DUE) or lead to silent data
corruption (SDC).

HBM2 memory devotes 12.5% redundancy for ECC check-
bits, and compute-class GPUs reportedly apply a single-bit-error-
correcting and double-bit-error-detecting (SEC-DED) code to
DRAM [2, 52]. These codes are fast and efficient, but they work
best for isolated direct-cell strikes and logic errors can exceed their
maximum detection and correction capabilities. Sections 6 and 7
investigate the design space of both binary and symbol-based ECC
codes, ultimately proposing two low-overhead organizations that
decrease the SDC risk of SEC-DED ECC by many orders of magni-
tude, and increase the correction rate by up to 7.87×.

Server-class CPUs commonly employ DRAM ECC codes that
can correct the data coming from a whole DRAM device [1, 15,
27, 29]. Whole-device correction is possible for server memory
because DIMMs in CPU nodes are often composed of narrow 4b
wide DRAM devices, meaning that a symbol-based ECC code (such
as a Reed-Solomon code with 8b symbols) can correct the data
coming from an entirely-faulty chip [1, 22, 39]. Numerous recent
works [10, 33, 35, 48, 49] have investigated whole-die correction
for stacked DRAM (such as HBM2) with the expectation that it is
analogous to whole-device correction in server memories. These
approaches rely on multi-tiered ECC, where error correction uses
a second ECC check-bit pool in a separate DRAM channel. Our
results indicate that soft errors do not span an entire HBM2 DRAM
die, and these approaches are expensive and microarchitecturally
complex due to their need for channel-to-channel communication,
write amplification, and additional redundancy. Accordingly, we
only consider single-tiered ECC codes in this paper (similar to the
existing SEC-DED protection in current GPUs), and do not focus on
HBM2 die correction, as it would not give any additional protection
for the soft errors we observe through neutron beam testing.

3 METHODOLOGY
Neutron Beam Testing Details: Results come from two neutron
beam testing campaigns at the ChipIR beamline of the ISIS Neutron
and Muon Source [20]. ChipIR is purpose-built for microelectronics
reliability testing, with neutron energies that are tuned to resemble

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Sullivan et al.

Collimated

Neutron
Beam

Fluence

Counter

Quadro V100

GPUs Beam Trajectory

View of Wall View of Chamber

Fig. 2: A picture of our neutron beam testing setup.

the terrestrial energy spectrum [9]. We test NVIDIA Quadro V100
compute-class GPUs, each with 32GB of HBM2 DRAM. We use
results from one campaign for intermittent error experiments and
the other for soft error patterns. Within each campaign, we see
no statistically-significant differences between different Quadro
V100 GPUs, and present their results combined. Figure 2 shows the
experimental setup. Our beam testing experiments take place with
the GPU running at full voltage and speed, using the full NVIDIA
software stack. The host machine is a Xeon-based server with ECC-
protected on and off-chip memories. Furthermore, the host machine
is separated from the GPU (and thus the radiation) by a 500mm PCIe
extender cable. The average flux during our DRAM experiments
was 9.8e5 neutrons/cm2/second, representing an acceleration factor
of 2.52e8 over the terrestrial neutron flux of 14 neutrons/cm2/hour
at sea level in New York City [32].

Accelerator DRAM Beam Testing Methodology: We run a
targeted CUDA microbenchmark to observe and quantify the ef-
fects of DRAM errors in on-package HBM2 DRAM. The DRAM mi-
crobenchmark writes a known pattern to every memory entry and
reads back the memory repeatedly, recording and time-stamping
any mismatches in duplicated pinned host memory (and not on the
device). The outer write loop executes 10 times per run and the
inner loop reads 20 times per write. The microbenchmark streams
through DRAM with no cache reuse, and uses duplicated execution,
duplicated logging, on-chip SRAMECC, and programmer assertions
to guard against errors outside of DRAM; the 11

1830 (0.60%) of runs
that fail these checks are discarded. We run the microbenchmark
with the GPU DRAM ECC disabled to prevent frequent DUEs from
crashing the experiment and to give us visibility into severe error
patterns that may be misclassified as single or double-bit errors by
the ECC hardware. We leave the GPU SRAM ECC enabled using a
modified GPU BIOS.

We run experiments using three data patterns. The first pattern
writes all 0s (or all 1s) to memory, the second writes a pseudo-
checkerboard pattern of 0x555..., 0xAAA..., the third pattern writes
an AN-encoded data value [7] to each 8B word, representing the
index of that word in the virtual memory space ×232 − 1. We use
the AN-encoded pattern because it offers a less-synthetic mix of 1s
and 0s within each codeword. For each of these data patterns, we
alternate write cycles between writing the data and its inverse in
order to properly diagnose unidirectional intermittent errors.

Intermittent Error Exploration Methodology: We investi-
gate the intermittent HBM2 errors that develop and persist outside
of the beam using two experiments. The first continually runs the

DRAM microbenchmark during the beginning of GPU exposure
to track the accumulation of intermittent errors with cumulative
fluence. The second removes one GPU from the beam and com-
pares the effect of varying DRAM refresh rates on the number of
observable intermittent errors. We modulate the DRAM refresh rate
using a modified GPU BIOS. Before beam-testing the GPUs, we first
verify that they run error-free overnight with a 48ms refresh period
(the lowest used in our experiments), meaning that all intermittent
errors are due to beam exposure.

4 INTERMITTENT ERRORS IN HBM2
We have strong evidence that a physical effect called displacement
damage is the cause of the observed intermittent errors in DRAM.
Energetic radiation can physically damage the DRAM access tran-
sistor, increasing cell leakage current [12, 13, 19, 59]. This increased
leakage reduces the retention time of the DRAM cell by orders
of magnitude, and the degraded retention capabilities can persist
outside of exposure to radiation [58, 59]. Displacement damage
has previously been observed for DDR3 DRAMs [43] and DDR4
DRAMs (in a similar process technology as HBM2) [55]. We settled
on the hypothesis of displacement damage for the HBM2 DRAM
because of the speed with which the errors occur—the cumulative
fluence exposure of the DRAM is not nearly enough to cause other
radiation-induced faults such as those related to total-ionizing-
dose [68]. Our beam testing experiments support this hypothesis,
and we we characterize the refresh impact of displacement dam-
age, describe the proper methodology to filter out these effects in
post-processing, and draw some practical conclusions below.

Retention Errors: We expect displacement-damaged cells to
exhibit reduced retention capabilities. To test weak cell retention,
we run the microbenchmark outside the beam on a heavily dam-
aged GPU while modulating the DRAM refresh rate. Figure 3a uses
blue markers to show the measured weak cell counts when mod-
ulating the DRAM refresh rate. The number of weak cells mono-
tonically increases with increasing refresh period, as we expect
from a refresh-related effect. The rate of this increase is stronger
at low refresh periods; this trend can be explained if the weak cell
retention times are normally distributed. Figure 3b shows a nor-
mal curve that closely fits the data, formed using non-linear least
squares regression. We then cast this normal curve back to weak
cell counts using its CDF; the results are overlaid in Figure 3a as an
orange line. The predicted weak cell counts at the measured refresh
periods are shown with orange “X” marks; the predictions agree
closely with our measurements.

Retention Error Behaviors: We expect retention-related er-
rors to be single-bit and unidirectional, as they correspond to a
bitcell capacitor leaking before the memory entry is refreshed. The
logical direction of this unidirectional error depends on whether
a given bitcell is stored active high or low. This differs between
vendors—for example, Lim et al. studied the effects of displacement
damage on memory from four anonymous vendors, and found that
two of the vendors exhibited only 1→0 logical errors, whereas the
other two vendors exhibited both 1→0 and 0→1 errors, depending
on bit position[43]. In our error experiments, 99.8% (±0.16%) of the
intermittent errors were always in the 1 → 0 direction, possibly
indicating that this memory stores the logical values directly to the
bitcells. While we need to further investigate the cause of the few

Characterizing and Mitigating Soft Errors in GPU DRAM MICRO ’21, October 18–22, 2021, Virtual Event, Greece

256

512

1024

2048

0 20 40 60

N
um

be
r

o
f

W
ea

k
 C

el
ls

Refresh Period (ms)

Predicted Rate

With Normally-Distributed
Retention Times

(a) Intermittent Error Rate vs. the Refresh Period

0

0.015

0.03

0.045

0 10 20 30 40 50

P
ro

b
ab

il
it

y
 D

en
si

ty

Weak Cell Retention Time (ms)

µ: 20.03 ms
σ: 9.99 ms

Example @ 8ms Refresh:
11.4% * 2595 = 296

≈ 294 (Measured)

(b) Normally Distributed Refresh Times Fit to the Data

0

200

400

600

0 1 2 3 4 5 6 7 8 9 10

W
ea

k
 C

el
l
C

o
u
n

t

Cumulative Fluence, Billions of Neutrons / cm^2

R2 = 0.97

(c) The Accumulation of Weak Cells

Fig. 3: Intermittent error experiments: (a) weak cell
counts when modulating DRAM refresh rates, (b) normally-
distributed weak cell retention times fit to the data, (c) the
accumulation of weak cells with cumulative exposure.

intermittent errors that exhibit 0→1 transitions, we suspect that
they are due to displacement-damage related leakage current in
non-bitcell structures. We reproduce prior findings on weak cells
that report single bit errors, with no obvious pattern, and no overlap
between soft error and weak cell locations [55].

Weak Cell Accumulation: Rodriguez et al. observe that the
weak cell count is linearly proportional to the total neutron
exposure of the DRAM [59]. We plot the cumulative count of
intermittently-classified errors at the beginning of our beam test-
ing campaign in Figure 3c. The trend agrees with the previous
characterization—a linear regression of the data (R2= 0.97) is shown
with a blue dotted line. We do not see the linear weak cell count
increase indefinitely with beam exposure, but rather the increase
eventually asymptotes to roughly a thousand cells with a 16ms
refresh period, as can be seen in Figure 3a. Prior work has noted
that DRAM cells can be separated into leaky and strong cells [40].
One hypothesis is that we observe linear scaling in the number of
weak cells until all leaky cells are weak, after which point weak cell
accumulation slows.

Error Annealing: We observe partial annealing over time,
which is consistent with prior reports [43, 44, 59]. Roughly three
and a half hours before we ran the refresh rate experiment above,

we ran a trial experiment with refresh periods of 8ms and 48ms.
(The machine sat outside of the beam in the intervening period.)
The number of weak cells with an 8ms refresh period fell from
397 during the trial to 294 in the full experiment (a 26% decrease).
However, the 48ms refresh period shows both a smaller relative
and absolute decline from 2,656 weak cells to 2,589 (only a 2.5%
decrease). The normally-distributed cell retention time model from
above can explain this refresh-period dependence—if the retention
time curve shifts upon annealing, we expect a relatively large de-
crease with short retention periods and a much smaller decrease at
large ones.

Post-Processing: Our experiments show that even a heavily-
damaged GPU contains only roughly a thousand weak cells out
of 32GB of DRAM (with the default 16ms HBM2 refresh period).
This, combined with the isolated single-bit nature of displacement
damage, means that the intermittent errors have a vanishingly small
probability of overlapping with soft errors in the beam. This allows
us to filter out the intermittent errors by classifying any memory
entry with repeated errors as damaged, and ignoring any error
contribution from these damaged entries. We never see any broad
soft error overlap with a damaged memory entry.

Overall Impact of our Findings: The isolated, single-bit na-
ture of displacement damage means that single-bit error correction
can correct all of the intermittent errors, and beam testing cam-
paigns that are not focused on main memory need not model an
SDC contribution from damaged DRAM cells if ECC is enabled.
The relatively low weak-cell counts allow us to post-process out
the intermittent errors by classifying any memory entry with re-
peated errors as damaged. The gradual weak cell accumulation rate
and annealing speed suggest that displacement damage will not be
a field effect for HBM2 devices at terrestrial flux rates, and thus
the intermittent errors do not need to be addressed by an error
protection scheme.

5 MEASURED SOFT ERROR PATTERNS
This section presents the soft error patterns we observed in HBM2
memory after filtering out any intermittent errors. Figure 4 gives
high-level information on the error severity and breadth we ob-
serve. The All0/All1, pseudo-checkerboard, and AN-encoded error
patterns have overlapping error bars in these metrics so we present
them combined. The mean-time-to event in the beam is in sec-
onds while HBM2 memory only takes milliseconds to perform a
single read or write loop. Events that hit during different loop it-
erations will not be classified as a single multi-bit upset, avoiding
any significant risk of multiple events being classified as a single
broad-and-severe error.

Error Breadth: Figure 4a gives the relative breakdown of the
breadth and severity of each error based on four classes. (1) SBSE:
Single-Bit, Single-Entry; (2) SBME: Single-Bit, Multiple-Entry; (3)
MBSE: Multiple-Bit, Single-Entry; and (4) MBME: Multiple-Bit,
Multiple-Entry. Isolated single-bit events represent 65% ± 2.3%
of the errors. Multiple-bit, multiple-entry (MBME) events are the
second most common (28% ± 2.1%), and they can be quite broad.
Figure 4b shows the number of 32B memory entries affected by
each MBME error, grouped into bins of exponentially-increasing
sizes. The breadth of MBME errors is a long-tailed distribution,
with the most broad error affecting 5,359 memory entries.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Sullivan et al.

0%
20%
40%
60%

SBSE SBME MBSE MBME

P
er

ce
n

t
o

f
E

rr
o

rs

Breadth Classification

(a) Classified Error Breadths and Severity

0%
20%
40%
60%

(0, 10] (10, 100] (100, 1000] (1000, 5359]

%
 M

B
M

E
 E

rr
o

rs

Erroneous 32B Memory Entries per MBME Error

(b) MBME Breadths

0%
30%
60%
90%

Byte-Aligned Non-Byte-Aligned

%
 M

ul
ti

-B
it

 E
rr

o
rs

1 Word 2 Word 3 Word 4 Word

(c) MBSE+MBME Symbol Alignment and Words per Entry

Fig. 4: High-level information on the severity and breadth
of the observed HBM2 soft errors. SBSE: Single-Bit, Single-
Entry; SBME: Single-Bit, Multiple-Entry; MBSE: Multiple-
Bit, Single-Entry; MBME: Multiple-Bit, Multiple-Entry.

Error Severity: The severity of multi-bit (MBSE+MBME) errors
is also a concern. To reason about their severity, we split the multi-
bit errors into two classes that are illustrated in Figure 4c. Byte-
aligned multi-bit errors are the most common, representing 74.6%±
3.8% of multi-bit errors. These byte-aligned errors can affect many
32B entries, but within each 64b word the error is confined to an
aligned byte of memory. Non-byte-aligned errors are less frequent
(25.4% ± 3.8% of multi-bit events), and they can affect up to all 64b
data in a word of memory.

The tendency towards single-bit and byte-aligned errors follows
intuitively from the structure of DRAM with the observation that
most soft errors are mat-local. Because HBM2 supports per-byte
write enables,3 it is likely that logically-contiguous bytes of trans-
mitted data are mapped directly to the 8b data mats with per-mat
enable signals. Thus each byte in a 32B HBM2 read (with 4B ECC)
likely comes from its own mat. Any mat-local failure is therefore
confined to a logically-contiguous byte of a memory access.

Figure 5 shows the severity of multi-bit (MBSE+MBME) errors
in terms of the number of affected bits per erroneous word. Byte-
aligned errors (Figure 5a) and non-byte-aligned errors (Figure 5b)
show similar error patterns. Flipping half of the bits in a byte or
word is the most common error modality, with probabilities falling
towards the extremes. The distribution of error severities matches
the random-corruption expectation reasonably well, as shown by

3Per-byte write enables are only supported in HBM2 ECC disabled, but it is likely that
the data layout is the same with ECC on or off.

0%

10%

20%

30%

40%

1 2 3 4 5 6 7 8

P
e
rc

e
n

t
o

f
B

y
te

 E
rr

o
rs

Number of Erroneous Bits Per Word

Percent of Errors Expectation (Random Uniform)

(a) MBSE+MBME Symbol-Aligned Error Severities

0%

10%

20%

30%

40%

(0, 8] (8, 16] (16, 24] (24, 32] (32, 40] (40, 48] (48, 56] (56, 64]

P
er

ce
n

t
o

f
B

ea
t/

E
n

tr
y
 E

rr
o

rs

Number of Erroneous Bits Per Word

Percent of Errors Expectation (Random Uniform)

(b) MBSE+MBME Non-Symbol-Aligned Error Severities

Fig. 5: Multi-bit error severity in bits per word.

the brown bars. There is an anomalous tendency for ∼15% of er-
rors to flip all of the bits in a byte or word. These inversion er-
rors are data-dependent, affecting the All0/All1 data pattern more
frequently than the other patterns. We choose uniform random
corruption as the error model for evaluation in the remainder of the
paper. Erroneous byte or word inversions are generally simpler for
ECC to detect and correct than random errors, and we do not want
to make an assumption about the data in memory so we conserva-
tively choose the harder error pattern. The random error model also
closely matches prior ECC evaluation methodologies [23, 24, 39].

Words Per Entry: Figure 4c also shows the number of words
affected per erroneous entry, as stacked bars. Byte-aligned errors
tend to affect only a single word per entry (and occasionally two),
whereas non-byte-aligned errors tend to affect all four words in the
entry but occasionally are confined to a single word.

Effect of DRAMUtilization: If multi-bit errors are symptoms
of erroneous DRAM logic, then the rate of MBME errors could
depend on the memory utilization of a program. By sweeping the
microbenchmark DRAM utilization, we confirm that the fraction
of broad-and-severe logic errors (MBSE+MBME) is proportional
to the number of memory accesses, while narrow array errors
(SBSE+SBME) are proportional to the exposure time. This provides
support to the hypothesis that our observed multi-bit errors origi-
nate in DRAM logic structures, rather than from direct cell strikes.

Proposed Error Model for Evaluation: Our beam testing
results show some error patterns are much more prevalent than
others. These patterns should be taken into account when designing
and evaluating the system-level error protection mechanisms of
GPUs and other accelerators. We propose a simple analytical error
model for ECC evaluation that weights the random bit, byte, beat,
pin, and whole-entry errors with probabilities drawn from the beam

Characterizing and Mitigating Soft Errors in GPU DRAM MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Tab. 1: Soft Error Pattern Probabilities.

Severity Bits Probability

1 Bit 1 73.98%
1 Pin 2–4 0.19%
1 Byte 2–8 22.56%
2 Bits 2 0.11%
3 Bits 3 0.03%
1 Beat 4–64 0.90%
1 Entry 4–256 2.23%

testing data. We classify each error according to these 7 patterns,
with their probabilities shown in Table 1. Patterns are sorted in
increasing ECC difficulty for correction, and priority is given to
less-difficult errors whenever multiple patterns fit—for example, a
2b error can be thought of as any error with 2 erroneous bits that
are not in the same byte or pin.

6 IMPROVEMENTS TO HBM2 ECC
The detailed HBM2 error patterns from beam testing allow us to
judge the efficacy of different GPU ECC codes. We investigate the
design space of both binary and symbol-based ECC codes, consid-
ering ECC schemes that use binary, 2b, and 1B symbols. As part of
this investigation, we describe three complementary optimizations
below that can combine to create a low-cost drop-in replacement
for SEC-DED ECC called DuetECC/TrioECC. We also expand the
state-of-the-art in byte-correcting Reed-Solomon codes by describ-
ing a fast and efficient scheme we call SSC-DSD+ that offers higher
resilience against soft errors, albeit with a larger hardware overhead
and without the pin error correction offered by SEC-DED ECC.

6.1 Binary ECC Code Designs
SEC-DED Baseline: As a binary ECC baseline code, we consider a
SEC-DED implementation utilizing a minimum-odd-weight Hsiao
code (“(72, 64) SEC-DED version 1” from [28]). We utilize the 12.5%
redundancy by splitting the 36B memory access (32B data, 4B ECC)
into four 72b codewords, one per DRAMbeat. This closely resembles
the conventional way to employ SEC-DED ECC on DIMM-based
main memories.

Decoding Behavior with Multiple Codewords: As our base-
line uses four codewords per memory entry, it enjoys some addi-
tional opportunistic error detection and correction capabilities. If
any multi-bit error only affects a single bit per codeword, it can
be handled via single-bit correction. Likewise, if a multi-bit error
causes a DUE in any of the four constituent codewords, the entire
memory entry is discarded such that an SDC in any other codeword
may be avoided.

Logical Codeword Interleaving: As an optimization, we log-
ically interleave the four codewords from each memory entry such
that a byte error is distributed between all four. When combined
with SEC-DED ECC, our interleaving pattern provides half-byte
error correction and single-byte detection, while preserving single-
pin correction. Figure 6 contrasts non-interleaved SEC-DED with
this logical interleaving. An example byte error is denoted in the
first transmitted burst. Our chosen interleave scheme uses Equa-
tions 1 and 2 to swizzle and deswizzle each 32B memory access.

A0

B0

C0

D0

B1

A1

C1

D1

B2

D2

A2

C2 C3

D3

A3

B3

A4

B4

C4

D4

B5

A5

C5

D5

B6

D6

A6

C6 C7

D7

A7

B7

CW D

CW C

CW B

CW A

Pin 0 Pin 1 Pin 2 Pin 3 Pin 4 Pin 5 Pin 6 Pin 7

(a) SEC-DED with a Byte Error

A0 B1 C2 D3

C1 D2 A3B0

A2 B3C0 D1

C3D0 A1 B2

A4 B5 C6 D7

C5 D6 A7B4

A6 B7C4 D5

C7D4 A5 B6Beat 4

Beat 3

Beat 2

Beat 1

Pin 0 Pin 1 Pin 2 Pin 3 Pin 4 Pin 5 Pin 6 Pin 7

(b) Logically Interleaved SEC-DED with a Byte Error

Fig. 6: A comparison of transmission on the first 8 data pins
for SEC-DED and logically interleaved SEC-DED. Each data
bit is labeled with its index, and a byte error is shown.

Variables I_bits and NI_bits represent the interleaved and non-
interleaved bit vectors; the constants 73 and 288 are the codeword
size plus one and the memory entry size (including ECC check-bits),
respectively. We use |x |A as shorthand to denote the residue of x
modulo A.

I_bits[i] = NI_bits[|i ∗ 73|288], ∀i ∈ N : 0≤ i <288 (1)
NI_bits[|i ∗ 73|288] = I_bits[i], ∀i ∈ N : 0≤ i <288 (2)

This interleaving scheme respects a per-beat rotation between the
interleaved codewords to maintain pin correction. This per-beat
rotation forms a “checkerboard” pattern that spreads a pin error
among single-bit errors in each codeword.

Correction Sanity Check: As a further optimization, we ap-
ply a correction sanity check to the four interleaved codewords per
memory entry. The correction sanity check works by considering
the location of corrected errors if there are multiple codewords per-
forming correction. If the corrected bits reside in the same pin or
same byte, correction is allowed to proceed as normal. Otherwise,
the correction sanity check raises a DUE. This sacrifices oppor-
tunistic correction for unexpected multi-cell, non byte-aligned, or
non-pin aligned errors, which has next-to-no correction rate im-
pact since such errors are extremely rare in the field. The benefit
of the correction sanity check is significantly higher protection
against SDC in the presence of a broad multi-byte error, such as
the whole-beat or whole-entry errors we observe. This correction
sanity check is inspired by similar mechanisms for multi-symbol
error correction [1, 39], but we are unaware of work that applies
the correction sanity check to interleaved codes to garner its error
detection benefit without the cost of multi-symbol error correction.

DuetECC: We refer to the combination of interleaving and
the correction sanity check as DuetECC. DuetECC is a safe and
conservative code that is able to detect all byte errors and provide
high detection capabilities against more severe errors. Ultimately,

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Sullivan et al.

it is able to maintain a three order-of-magnitude SDC reduction
over the SEC-DED baseline.

2b-Symbol Correction: A third optimization is to migrate
from a SEC-DED code to one that can correct 2b symbols. Inspired
by prior work in double-adjacent-bit error correcting codes [18],
we develop a 2b symbol correcting code using a genetic algorithm.
Equation 3 gives the parity checkmatrix for the SEC-2bEC code, pre-
sented in the Crockford Base32 binary-to-text encoding scheme [14].
The code maps aligned 2b errors to unique syndromes, allowing for
2b error correction with only slight modifications to the SEC-DED
decoder. Our code differs from [18] in that it is optimized to only
correct aligned 2b errors (and not all 2b-adjacent errors), reducing
the non-neighboring 2b error miscorrection risk by ∼20%. Our cho-
sen code is constrained to operate as a SEC-DED code if 2b symbol
correction is not attempted—this allows us to dynamically switch
between a SEC-DED or SEC-2bEC code with little additional hard-
ware. Note that we print the code for non-interleaved use (where 2b
symbols are bit-adjacent), but when combining with interleaving
we swizzle the H matrix and modify the 2b-adjacent correction
pattern to compose each 2b symbol of bits that are stride-4 apart.

HSEC−2bEC (72, 64) =

©«

2JZXMJP4K6FNWM0
0CRW9M5962TJMA0
1N9NJ8ZACKPQGH0
1B5B40P8S9A8H0G
2V3K9DWNJE0Z6G8
1ZDTJP8Z0CHGQR4
3MMQ5N4E4H1CA02
1FEYAZNM9J64DR1

ª®®®®®®®®®®®¬
(3)

TrioECC: The SEC-2bEC code complements the two other opti-
mizations we describe above. The main advantage SEC-2bEC is its
ability to correct all byte errors when combined with codeword in-
terleaving. Themainweakness of the SEC-2bEC code is its relatively
high risk of severe error miscorrection—a weakness that is greatly
diminished by the correction sanity check. We refer to the scheme
combining all three optimizations as TrioECC. TrioECC offers a
more correction-oriented and aggressive design than DuetECC,
providing strong byte error correction while maintaining a two
order-of-magnitude SDC reduction over SEC-DED ECC.

DuetECC vs. TrioECC: A fundamental downside of aggressive
correction is an increased risk of SDC-causing miscorrection in the
presence of severe errors. Thus, the expanded correction capabilities
of TrioECC introduce some risk relative to DuetECC, and the two
schemes expose a correction/SDC trade-off. We show later how a
single decoder can implement bothDuetECC and TrioECC, allowing
system architects to use whichever code best suits their purposes.

6.2 Symbol-Based ECC Code Designs
The prevalence of observed byte errors also motivates an explo-
ration into symbol-based ECC codes. We explore the design space of
Reed-Solomon codes with 8b symbols; these codes can potentially
offer byte correction and (in some organizations) pin correction.

Reed-Solomon Baseline: As a symbol-based ECC baseline,
we consider an interleaved Reed-Solomon code with two (18, 16)
Single-Symbol-Correct (SSC) codewords. This code can provide
byte error correction while preserving pin correction by using a 4-
pin by 2-beat 8b symbol layout, offering correction capabilities akin

Syndrome

Form Outputs

R bits

R bits

K bits

Correct Data DUE?DCE?

Data Check-Bits

Encoder

H Col. Match“
In

n
er

 D
ec

od
er

”
(I

D
)

(a) SEC-DED

Wires for Deswizzle

Form Outputs

Data Check-Bits

Corrected Data DUE?DCE?

K bits

K bits

Τ𝐾 2bits

Duet/Trio

HCM
2b

HCM
2b

HCM
2b

HCM
2b

SyndromeBroadcast(Rbits)

ID
SEC

ID
SEC

ID
SEC

ID
SEC

(b) Decoder Changes for DuetECC/TrioECC

Data Check-Bytes

Corrected Data DUE?DCE?

32 Bytes

Form Outputs

1 Syndrome Byte:
S[0]

1 Location Byte

EAC

Subtractor

EAC

Subtractor

EAC

Subtractor

S[1] S[2] S[3]

DLog DLog DLog

D[0, 1]

D[1, 2] D[2, 3]

DLog

Syndrome Generation

(c) Decoder Changes for SSC-DSD+

Fig. 7: The hardware for SEC-DED, DuetECC/TrioECC, and
SSC-DSD+ decoders. New or modified structures are high-
lighted in yellow. HCM: H-Column Match, DLog: Discrete
Log, EAC: End-Around-Carry (mod 255).

to TrioECC. Interleaving occurs similar to the description above
for binary codes, but at a byte granularity. This code is amenable to
the correction sanity check. It also allows the use of a low-cost and
low-latency one-shot Reed-Solomon decoder design [38], which
performs error location in fully-parallel combinational logic.

DSC or SSC-TSD: The 12.5% of available HBM2 redundancy
can be used to create a single (36, 32) codeword, offering either DSC
(double-symbol correct) or SSC-TSD (single-symbol correct, triple-
symbol detect) protection. Both of these codes come with high
decoder cost and latency, however, precluding the use of a one-shot
Reed-Solomon decoder. The use of either a DSC or SSC-TSD code
would require the decoder to solve for the roots of the error locator
polynomial, requiring at least 8 cycles based on iterative algebraic
decoding procedures [45]. Accordingly, we do not consider these
codes appropriate for GPU DRAM, due to the need for fast and
efficient ECC decoders.

SSC-DSD+: As an alternative to expensive SSC-TSD decoding,
we propose a one-shot-decodable scheme we call SSC-DSD+ that
provides single-symbol correct, double-symbol detect, and almost

Characterizing and Mitigating Soft Errors in GPU DRAM MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Tab. 2: ECC Scheme SDC Risk. (C=100% Corrected, D=100% Detected)

SEC-DED
(NI:SEC-DED) I:SEC-DED DuetECC

(I:SEC-DED+CSC) NI:SEC-2bEC I:SEC-2bEC TrioECC
(I:SEC-2bEC+CSC) I:SSC I:SSC+CSC SSC-DSD+

CWs 4 4 4 4 4 4 1 1 1
Symbol 1b 1b 1b 2b 2b 2b 8b 8b 8b

1 Bit C C C C C C C C C
1 Pin C C C C C C C C D
1 Byte 22.6721% D D 39.4062% C C C C C
2 Bits D D D 05.0813% 05.0813% 05.0813% 09.6545% 09.6545% D
3 Bits 03.4080% 03.4080% 03.4080% 14.9347% 14.9347% 04.7010% 16.8407% 03.8781% D
1 Beat 28.5201% 00.6615% 00.0013% 42.2054% 03.1670% 00.0089% 00.4898% 00.0543% 00.0002%
1 Entry 00.6640% 00.6603% 00.0013% 03.1646% 03.1643% 00.0085% 00.4898% 00.0543% 00.0002%

0%
20%
40%
60%
80%

100%

S
E

C
-D

E
D

 B
as

el
in

e

N
I-

S
E

C
-D

E
D

+
C

S
C

I:
S

E
C

-D
E

D

D
u

et
E

C
C

N
I:

S
E

C
-2

b
E

C

N
I:

S
E

C
-2

b
E

C
+

C
S

C

I:
S

E
C

-2
b

E
C

T
ri

o
-E

C
C

I:
S

S
C

I:
S

S
C

+
C

S
C

S
S

C
-D

S
D

+
*

C
o

rr
ec

te
d
 E

rr
o

r
%

Uncorrectable ↓7.87x ↓7.44x

0%
5%

10%
15%
20%
25%

S
E

C
-D

E
D

 B
as

el
in

e

N
I-

S
E

C
-D

E
D

+
C

S
C

I:
S

E
C

-D
E

D

D
u

et
E

C
C

N
I:

S
E

C
-2

b
E

C

N
I:

S
E

C
-2

b
E

C
+

C
S

C

I:
S

E
C

-2
b

E
C

T
ri

o
-E

C
C

I:
S

S
C

I:
S

S
C

+
C

S
C

S
S

C
-D

S
D

+
*

D
et

ec
ta

b
le

-U
n

co
rr

ec
ta

b
le

 %

0.000001%
0.000010%
0.000100%
0.001000%
0.010000%
0.100000%
1.000000%

10.000000%

S
E

C
-D

E
D

 B
as

el
in

e

N
I-

S
E

C
-D

E
D

+
C

S
C

I:
S

E
C

-D
E

D

D
u

et
E

C
C

N
I:

S
E

C
-2

b
E

C

N
I:

S
E

C
-2

b
E

C
+

C
S

C

I:
S

E
C

-2
b

E
C

T
ri

o
-E

C
C

I:
S

S
C

I:
S

S
C

+
C

S
C

S
S

C
-D

S
D

+
*

SD
C

 %
 (

L
o

g
Sc

al
e)

SDC ↓4,777x ↓749x ↓727,000x

Fig. 8: The correction, detection, and silent data corruption probabilities of each scheme, given a random single event.
* - SSC-DSD+ is the only scheme lacking pin error correction.

triple-symbol detection (>99.999964%) with a single-cycle decoder.
Unlike all other considered schemes, SSC-DSD+ does not provide
pin error correction. This limitation could be problematic for HBM2
if correction is used to gracefully degrade in the presence of per-
manent pin errors.

6.3 Hardware Implementations
SEC-DED Hardware: Binary linear block codes are uniquely de-
termined by anR×N parity-checkmatrix, “H.” TheHmatrix dictates
the structure of the encoder/decoder and the error correction and
detection capabilities of the code. To provide single-bit error cor-
rection, the constraints on the H matrix are very simple: every
column must be unique. To provide double-bit error detection, the
XOR of any two columns—used for addition in Galois Field (GF(2))
arithmetic—must not equal any column of the H matrix.

Figure 7a shows the SEC-DED decoder, which first generates
a syndrome by encoding the received data value and XORing it
with the received check-bits. If there is no error, then the generated
check-bits equal the received ones and the syndrome is all-0. Upon
a single-bit error, the bit from the column that equals the syndrome
needs to be corrected. This is communicated through a H-column-
match (HCM) signal to the output logic, which either corrects the
error or reports a DUE. We call the first three steps the “Inner
Decoder (ID).”

DuetECC/TrioECC Hardware: The three optimizations that
make up DuetECC and TrioECC require modest changes to the
whole-entry ECC decoder, as shown in Figure 7b. Interleaving takes
place at synthesis time, using Equation 2, and it is implemented by

wires in the final design. The baseline SEC-DED decoder has four
SEC-DED Inner Decoders that feed shared output logic; changes to
this output logic are needed for the Correction Sanity Check.

The SEC-2bEC decoder adds four half-width HCM circuits that
identify 2b symbol errors. Whereas the SEC IDs localize errors to
one of the K data bits, the new HCMs localize errors to one of
the K

2 2b symbols. The SEC-2bEC optimization also augments the
output logic to respect the 2b error correction signals. Our chosen
SEC-2bEC code can also operate as a SEC-DED code if 2b error
correction is never attempted. Thus, it is straightforward to add
a DuetECC/TrioECC enable signal to the output formation logic.
We envision that system architects can toggle between the two
codes, either with a global setting per GPU or potentially on a
per-CUDA-context basis, allowing different programs to prioritize
error detection or correction.

Reed-Solomon Hardware: Reed-Solomon codes are deter-
mined by an irreducible polynomial, α ; we use the primitive poly-
nomial α = x8 + x6 + x5 + x + 1. Figure 7c shows a single one-
shot Reed-Solomon SSC decoder; changes for SSC-DSD+ are high-
lighted in yellow. Syndrome generation is implemented using par-
allel GF(28) multipliers, and one-shot error location uses discrete
logarithm logic (DLogα) for efficient polynomial division [4, 47]
and end-around-carry (EAC) subtractors for low-cost modular sub-
traction [70]. The SSC-DSD+ code performs single-symbol error
location using each pair of check-bytes, and correction is only al-
lowed if all three error locations agree. This is conceptually similar

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Sullivan et al.

to the correction sanity check, and it provides complete double-
symbol error detection and nearly-triple-symbol error detection in
a heuristic manner, without solving the error locator polynomial.

7 RESILIENCE AND OVERHEADS
7.1 Resilience Per Event
Table 2 shows the SDC risk of the different ECC schemes and
optimizations, given the 7 error patterns from Table 1. Entries
marked “C” are always corrected, and those marked “D” are always
detected, meaning that they have 0% SDC risk. Bit, pin, and byte
errors are averaged over all possible error patterns; beat and entry
errors are averaged over 1e7/1e9 uniformly random error patterns
for binary and symbol-based codes, respectively, such that the
worst-case 99% confidence interval is less than ±0.0003%/±0.00003%.

The results show the complementary impacts of our three bi-
nary code optimizations. The SEC-DED baseline is weak against
severe-yet-common byte and beat errors, failing to correct or detect
23%–29% of such errors. Interleaving (denoted by “I:”) provides error
detection of byte errors, and it improves the coverage against beat
errors by spreading the error among all four codewords. The correc-
tion sanity check (denoted by “+CSC”) greatly increases beat and
whole-entry error detection, allowing DuetECC (I:SEC-DED+CSC)
to detect or correct all but 0.0013% of byte and beat errors. The
SEC-2bEC code represents a resilience regression if it is employed
alone in a non-interleaved manner (NI:SEC-2bEC) as it has signif-
icant miscorrection risk, even for double-bit errors. Interleaving
the SEC-2bEC code provides perfect byte error correction, and it
gives similar beat error improvements as with the SEC-DED code.
TrioECC (I:SEC-2bEC+CSC) combines the advantages of all three
optimizations, resulting in a compelling scheme that maintains
both strong correction as well as relatively low SDC risk. There is
a natural trade-off between aggressive correction and the detection
capabilities of a code, but the combination of interleaving and the
correction sanity check allow TrioECC to maintain 0.0085% SDC
risk in the presence of severe beat and whole-entry errors.

The results show mixed performance for symbol-based ECC
codes. The interleaved SSC baseline provides similar correction
capabilities to TrioECC, but with higher SDC risk in the presence
of 2-bit, 3-bit, beat, and whole-entry errors. The correction sanity
check improves the resilience of the interleaved SSC code some-
what, but it still falls short of TrioECC. One notable result is that
the relative improvement from the correction sanity check is far
better for interleaved bit-correcting codewords than for symbol-
based correction, due to the larger combinatorial space of rejected
miscorrections from the four codewords and the fine correction
granularity. Adding the correction sanity check to I:SSC results in
a 2.34× decrease in the whole-entry SDC probability, whereas it
results in a much larger 19× decrease for I:SEC-DED when moving
to DuetECC. The SSC-DSD+ code provides by far the best resilience
against soft errors, resulting in SDC for only 0.0002% of whole-entry
errors. Also, while the SSC-DSD+ code does not provide perfect
triple or quadruple-symbol detection, problematic error patterns are
sparse enough that SSC-DSD+ manages to maintain 100% detection
of 3b and pin errors at this codeword size.

Our beam testing results show some error patterns to be more
prevalent than others. Accordingly, Figure 8 shows the resulting

Tab. 3: Hardware Overheads of the Considered Schemes.

Scheme Area (AND2 / +%) Delay (ns / +%)

Encoders

SEC-DED Encoder 1176 / ++0-00% 0.09 / ++0-00%
SEC-2bEC (Perf.) 1693 / +44.02% 0.09 / ++0-00%
SEC-2bEC (Eff.) 1346 / +17.53% 0.10 / +11.11%
SSC (Perf.) 1565 / +33.11% 0.10 / +11.11%
SSC (Eff.) 1245 / +5.870% 0.11 / +22.22%
SSC-DSD+ (Perf.) 5205 / +442.8% 0.12 / +33.33%
SSC-DSD+ (Eff.) 2908 / +247.4% 0.15 / +66.66%

Decoders

SEC-DED Decoder 2467 / ++0-00% 0.20 / ++0-00%
DuetECC (Perf.) 4969 / +101.4% 0.20 / ++0-00%
DuetECC (Eff.) 2733 / +10.79% 0.24 / +20.00%
SEC-2bEC (Perf.) 3810 / +54.45% 0.20 / ++0-00%
SEC-2bEC (Eff.) 2806 / +13.73% 0.24 / +20.00%
TrioECC (Perf.) 4890 / +98.23% 0.21 / +05.00%
TrioECC (Eff.) 3020 / +22.43% 0.25 / +25.00%
SSC (Perf.) 6013 / +143.7% 0.32 / +60.00%
SSC (Eff.) 4880 / +97.82% 0.35 / +75.00%
SSC-DSD+ (Perf.) 10769 / +336.5% 0.39 / +95.00%
SSC-DSD+ (Eff.) 7177 / +190.9% 0.42 / +210.0%

correction, detection, and SDC probability estimates when weight-
ing by the error pattern probabilities from Table 1. The SEC-DED
baseline corrects 74% of events, detecting another 20%, leaving
a 5.4% SDC probability. Interleaving is able to correct 6.6% more
events (due to opportunistic half-byte correction), while decreas-
ing the SDC risk by 247×. DuetECC (I:SEC-DED+CSC) lowers the
SDC risk by another 19× over interleaving alone to achieve 0.0013%
SDC risk. DuetECC sacrifices a scant 0.53% correction probability
relative to interleaving, due to some discarded opportunistic cor-
rection. The SEC-2bEC code, alone, has a prohibitively-high 9.3%
SDC risk. Interleaving and the correction sanity check are able to
vastly improve the safety of the SEC-2bEC code such that TrioECC
(I:SEC-2bEC+CSC) offers a 97% correction probability with only
0.0085% SDC risk.

The interleaved SSC codes (I:SSC and I:SSC+CSC) offer correc-
tion capabilities that rival those of TrioECC, but with higher SDC
risk—I:SSC has 4.3× higher SDC risk than TrioECC, and the cor-
rection sanity check only narrows this to 1.8× higher SDC. We
show later that the interleaved SSC codes also have higher over-
heads than TrioECC. The SSC-DSD+ code has correction capabil-
ities that approach those of TrioECC, but the latter has slightly
higher correction capabilities due to pin correction. SSC-DSD+ has
by far the lowest SDC risk, meaning that it should be preferred
to DuetECC/TrioECC if a larger departure from SEC-DED ECC is
permissible. The SSC-DSD+ decoder is larger and slower than those
for the binary code-based schemes, and it sacrifices the ability to
correct permanent pin failures.

7.2 Hardware Overheads
Table 3 shows the encoder and decoder hardware overheads. We es-
timate the overheads using Verilog designs synthesized by the Syn-
opsys toolchain [65] with a 16nm industrial technology library. Area

Characterizing and Mitigating Soft Errors in GPU DRAM MICRO ’21, October 18–22, 2021, Virtual Event, Greece

and delay are estimated through standard-cell synthesis and static
timing analysis, with area presented in a technology-independent
manner using the equivalent AND2-gate count per circuit. Mini-
mizing the area-time product of the circuits, the baseline SEC-DED
encoder operates with 0.09ns delay and the decoder with 0.20ns
delay. Each alternate design is presented at two speeds: coming as
close to the delay of the baseline as possible (denoted “Perf.” for
performant) and operating at the area-time efficient design point
for the modified circuit (denoted “Eff.” for efficient).

DuetECC and TrioECC have modest area and timing overheads,
and they should offer a drop-in replacement for SEC-DED ECC
with minimal microarchitectural impact on the GPU. At worst,
the performant variant of TrioECC requires roughly 2500 extra
AND2-gates of area per memory channel. We do not expect the
0.01–0.05ns of added decoder delay for TrioECC to have a negative
impact on the memory system GPU clock rate, as compute-class
GPU clock frequencies are limited to <1.5GHz/0.66ns for energy
efficiency [41].

The overheads of the symbol-based codes are higher than those
of DuetECC/TrioECC. The interleaved SSC code has an efficient
encoder, but its decoder suffers from up to a 143.7% area and 75%
delay overhead relative to SEC-DEDECC. The SSC-DSD+ code has a
significantly larger and slower encoder and decoder that is roughly
2–4x as large and 66–210% slower than SEC-DED. Thus, while
the symbol-based codes still likely offer single-cycle encoding and
decoding, they represent a larger departure from the efficient and
fast SEC-DED ECC than the sub-cycle DuetECC/TrioECC designs.

7.3 System-Level Resilience and Availability
Our resilience and hardware-overhead analyses show two promis-
ing organizations. Symbol-based SSC-DSD+ offers very high re-
silience against soft errors, but with hardware overhead and per-
manent pin correction drawbacks. Binary DuetECC/TrioECC offer
a flexible and lightweight drop-in replacement for SEC-DED ECC.
The resilience analysis clearly shows SEC-DED to be insufficient
against soft errors, and SSC-DSD+ to be more-than-sufficient at
providing low SDC rates at scale. The system-level resilience of
DuetECC/TrioECC at scale are less clear, but we demonstrate below
that they provide useful levels of soft error resilience and availabil-
ity in high-performance computers and autonomous vehicles.

High-Performance Computing: Figure 9 shows the esti-
mated mean-time-to-interrupt (MTTI, or DUE rate) and mean-time-
to-failure (MTTF, or SDC rate) of DuetECC/TrioECC in an exascale
supercomputer using NVIDIA A100 GPUs [53]. The figure is drawn
assuming a failure rate of 12.51 FIT/Gb, inspired by the GDDR5
memory failure rates in the Titan supercomputer [67]. The correc-
tion/SDC tradeoff of the two binary schemes is apparent by the
superiority of TrioECC for system MTTI (Figure 9a) and DuetECC
for MTTF (Figure 9b). DuetECC suffers from frequent DUEs (every
1.6–6.3 hours) at scale, but it is completely safe with an HBM2 SDC
period in years. TrioECC crashes every 9.4–37.6 hours, which could
make the system significantly more usable for large jobs. However,
it only reduces the MTTF to 5.7–22.6 months at scale. The SEC-
DED baseline is not shown, as it has SDC rates in hours—at the
smallest scale shown (0.5 exaflops), we expect an SDC every 22.5
hours. SSC-DSD+ is also not shown, as it almost completely avoids
soft error SDC risk, with an MTTF in hundreds of years.

0

10

20

30

0.5 1 1.5 2

M
T

T
I

(H
o

u
rs

)

System Scale (EFlops)

MTTI-DuetECC

MTTI-TrioECC

37.6

6.3 9.4

1.6

(a) Time to Interrupt (DUE)

0

50

100

150

0.5 1 1.5 2

M
T

T
F

 (
M

o
n

th
s)

System Scale (EFlops)

MTTF-DuetECC

MTTF-TrioECC

36.1

5.7

144.5

22.6

(b) Time to Failure (SDC)

Fig. 9: The system-level failure rates of DuetECC/TrioECC.

Autonomous Vehicles: Autonomous vehicles require strin-
gent safety standards, and the number of vehicles on the road
surpasses the GPU count of the largest supercomputers. The ISO
26262 functional safety standard for autonomous vehicles [30] dic-
tates that vehicles satisfying the highest safety level must maintain
≤10 FIT of SDC. Assuming a 12.51 FIT/Gb raw HBM2 error rate,
as above, we conclude that SEC-DED ECC is likely insufficient
to satisfy this safety standard for a GPU-accelerated AV system.
A SEC-DED protected A100 GPU suffers from 216 FIT of HBM2
SDC, while TrioECC reduces this to 0.29 FIT, and DuetECC to 0.045
FIT—well within the ISO 26262 requirements.

Strong and safe HBM2 ECC is also societally desirable for au-
tonomous vehicles. In 2016–2017, 225.8 million drivers in the United
States spent an average of 51 minutes per day driving a car [25],
for a total of 1.92e8 hours per day. If all cars were autonomous,
with a single A100 GPU per car, then SEC-DED protected HBM2
would result in an expected 41 SDC events on the road each day.
DuetECC/TrioECC reduce the expected SDC counts to one every
18 days and one every 115 days, respectively. It is likely that an
HBM2 DUE would interrupt the regular course of the car, meaning
that on average 148 DuetECC-protected vehicles would require
soft error-related recovery per day, while TrioECC and SSC-DSD+
reduce these events to 25 daily cars.

8 CONCLUSION
This paper presents neutron beam testing results for GPU HBM2.
It describes, models, and draws conclusions about displacement-
damaged DRAM cells in the neutron beam, guiding beam testing
campaigns with on-package memory. Detailed soft error corruption
patterns are then shown, which demonstrate a prevalence of severe
byte and whole-entry errors due to particle strikes in DRAM logic
structures. Based on these soft error corruption patterns, we pro-
pose two tailored ECC schemes, DuetECC/TrioECC and SSC-DSD+,
which are able to decrease the silent data corruption risk by up to
five orders of magnitude relative to SEC-DED ECC, while reducing
the number of uncorrectable errors by as much as 7.87×. Despite
these vast resilience improvements, DuetECC/TrioECC and SSC-
DSD+ require no additional redundancy, no performance impacts,
and they have modest area and complexity costs.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Sullivan et al.

REFERENCES
[1] Advanced Micro Devices (AMD), Inc. 2013. BIOS and Kernel Developer’s Guide

(BKDG) for AMD Family 15h Models 00h-0Fh Processors. https://www.amd.com/
system/files/TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf.

[2] AMD. 2012. AMD Graphics Cores Next (GCN) Architecture. https://www.
techpowerup.com/gpu-specs/docs/amd-gcn1-architecture.pdf.

[3] AMD. 2017. AMD’s Radeon Next Generation GPU Architecture: Vega10. In
Proceedings of the Symposium on High Performance Chips (HOTCHIPS).

[4] Elwyn R Berlekamp. 1984. Algebraic Coding Theory. Aegean Park Press.
[5] David Blythe. 2020. The Xe GPU Architecture. In Proceedings of the Symposium

on High Performance Chips (HOTCHIPS).
[6] L. Borucki, G. Schindlbeck, and C. Slayman. 2008. Comparison of Accelerated

DRAM Soft Error Rates Measured at Component and System Level. In Proceedings
of the International Reliability Physics Symposium (IRPS). 482–487.

[7] D. T. Brown. 1960. Error Detecting and Correcting Binary Codes for Arithmetic
Operations. IRE Transactions on Electronic Computers EC-9, 3 (1960), 333–337.

[8] J.M. Caffrey. 2008. The Resiliency Challenge Presented by Soft Failure Incidents.
IBM Systems Journal 47 (2008), 641–652.

[9] Carlo Cazzaniga and Christopher D. Frost. 2018. Progress of the Scientific Com-
missioning of a Fast Neutron Beamline for Chip Irradiation. Journal of Physics:
Conference Series 1021, 1 (May 2018).

[10] Hsing-Min Chen, Carole-Jean Wu, Trevor Mudge, and Chaitali Chakrabarti. 2016.
RATT-ECC: Rate Adaptive Two-Tiered Error Correction Codes for Reliable 3D
Die-Stacked Memory. ACM Transactions on Architecture and Code Optimization
(TACO) 13, 3 (2016), 24:1–24:24.

[11] Jack Choquette andWish Gandhi. 2020. NVIDIA A100 GPU: Performance & Inno-
vation for GPU Computing. In Proceedings of the Symposium on High Performance
Chips (HOTCHIPS).

[12] A. M. Chugg, A. J. Burnell, P. H. Duncan, S. Parker, and J. J. Ward. 2009. The
Random Telegraph Signal Behavior of Intermittently Stuck Bits in SDRAMs. IEEE
Transactions on Nuclear Science 56, 6 (2009), 3057–3064.

[13] A. M. Chugg, J. McIntosh, A. J. Burnell, P. H. Duncan, and J. Ward. 2010. Probing
the Nature of Intermittently Stuck Bits in Dynamic RAM Cells. IEEE Transactions
on Nuclear Science 57, 6 (2010), 3190–3198.

[14] Douglas Crockford. 2019. Base 32. https://www.crockford.com/base32.html.
[15] Timothy J Dell. 1997. A White Paper on the Benefits of Chipkill-Correct ECC for

PC Server Main Memory. IBM Microelectronics Division (1997), 1–23.
[16] Catello Di Martino, Zbigniew Kalbarczyk, Ravishankar K Iyer, Fabio Baccanico,

Joseph Fullop, and William Kramer. 2014. Lessons Learned from the Analysis
of System Failures at Petascale: The Case of Blue Waters. In Proceedings of the
International Conference on Dependable Systems and Networks (DSN).

[17] Fernando Fernandes dos Santos and Paolo Rech. 2017. Analyzing the Criticality
of Transient Faults-induced SDCS on GPU Applications. In Proceedings of the
8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems.
1:1–1:7.

[18] A. Dutta and N.A. Touba. 2007. Multiple Bit Upset Tolerant Memory Using a
Selective Cycle Avoidance Based SEC-DED-DAEC Code. In Proceedings of the
VLSI Test Symposium (VTS). 349–354.

[19] L. D. Edmonds and L. Z. Scheick. 2008. Physical Mechanisms of Ion-Induced
Stuck Bits in the Hyundai 16M ×4 SDRAM. IEEE Transactions on Nuclear Science
55, 6 (2008), 3265–3271.

[20] DJS Findlay. 2007. ISIS-Pulsed Neutron and Muon Source. In 2007 IEEE Particle
Accelerator Conference (PAC). 695–699.

[21] Fujitsu Ltd. 2020. FUJITSU Processor A64FX. https://www.fujitsu.com/
downloads/JP/jsuper/a64fx/a64fx_datasheet.pdf.

[22] Bharan Giridhar, Michael Cieslak, Deepankar Duggal, Ronald Dreslinski, Hs-
ing Min Chen, Robert Patti, Betina Hold, Chaitali Chakrabarti, Trevor Mudge,
and David Blaauw. 2013. Exploring DRAM Organizations for Energy-Efficient
and Resilient Exascale Memories. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis (SC). 1–12.

[23] Seong-Lyong Gong, Jungrae Kim, Sangkug Lym, Michael Sullivan, Howard David,
and Mattan Erez. 2018. DUO: Exposing On-Chip Redundancy to Rank-Level
ECC for High Reliability. In Proceedings of the International Symposium on High
Performance Computer Architecture (HPCA). 683–695.

[24] Seong-Lyong Gong, Minsoo Rhu, Jungrae Kim, Jinsuk Chung, and Mattan Erez.
2015. Clean-ECC: High Reliability ECC for Adaptive Granularity Memory System.
In Proceedings of the International Symposium on Microarchitecture (MICRO). 611–
622.

[25] Andrew Gross. 2019. Think You’re In Your Car More? You’re
Right. Americans Spend 70 Billion Hours Behind the Wheel. https:
//newsroom.aaa.com/2019/02/think-youre-in-your-car-more-youre-right-
americans-spend-70-billion-hours-behind-the-wheel/.

[26] Sudhanva Gurumurthi. 2020. Advanced Memory Device Correction (AMDC)
for Servers. https://www.amd.com/system/files/documents/advanced-memory-
device-correction.pdf.

[27] Hewlett-Packard. 2021. Memory RAS Technologies for HPE Pro-
Liant/Synergy/Blade Gen10 Servers with Intel Xeon Scalable Processors.

https://www.hpe.com/psnow/doc/4AA4-3490ENW.
[28] M.Y. Hsiao. 1970. A Class of Optimal Minimum Odd-weight-column SEC-DED

Codes. IBM Journal of Research and Development 14, 4 (1970), 395–401.
[29] Intel Corp. 2011. Intel Xeon Processor E7 Family: Reliability, Availability, and Ser-

viceability. https://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/xeon-e7-family-ras-server-paper.pdf.

[30] ISO. 2011. ISO 26262-9:2011 Preview Road Vehicles Functional Safety. https:
//www.iso.org/standard/51365.html.

[31] Aakash Jani. 2020. SiPearl Develops ARM HPC Chip. https://www.linleygroup.
com/mpr/login.php?return_url=/mpr/article.php?id=12379&num=6227. The
Linley Group Microprocessor Report from October 19, 2020.

[32] JEDEC Solid State Technology Association 2006. Measurement and Reporting of
Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor
Devices, JeSD89A. JEDEC Solid State Technology Association.

[33] H. Jeon, G.H. Loh, andM. Annavaram. 2014. Efficient RAS Support for Die-stacked
DRAM. In Proceedings of the International Test Conference (ITC). 1–10.

[34] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza. 2018. Dis-
secting the NVIDIA Volta GPU Architecture via Microbenchmarking. arXiv
preprint arXiv:1804.06826 (2018).

[35] X. Jian, V. Sridharan, and R. Kumar. 2016. Parity Helix: Efficient Protection for
Single-Dimensional Faults in Multi-Dimensional Memory Systems. In Proceed-
ings of the International Symposium on High Performance Computer Architecture
(HPCA). 555–567.

[36] Joint Electron Device Engineering Council 2013. High Bandwidth Memory (HBM)
DRAM, JESD235. Joint Electron Device Engineering Council.

[37] H. Jun, J. Cho, K. Lee, H. Son, K. Kim, H. Jin, and K. Kim. 2017. HBM (High
Bandwidth Memory) DRAM Technology and Architecture. In Proceedings of the
International Memory Workshop (IMW). 1–4.

[38] Y. Katayama and S. Morioka. 2000. One-Shot Reed-Solomon Decoding for High-
Performance Dependable Systems. In Proceedings of the International Conference
on Dependable Systems and Networks (DSN). 390–399.

[39] Jungrae Kim, Michael B. Sullivan, and Mattan Erez. 2015. Bamboo ECC: Strong,
Safe, and Flexible Codes for Reliable Computer Memory. In Proceedings of the
International Symposium on High Performance Computer Architecture (HPCA).

[40] K. Kim and J. Lee. 2009. A New Investigation of Data Retention Time in Truly
Nanoscaled DRAMs. IEEE Electron Device Letters 30, 8 (2009), 846–848.

[41] Ronny Krashinsky, Olivier Giroux, Stephen Jones, Nick Stam, and Sridhar Ra-
maswamy. 2020. NVIDIA Ampere Architecture In-Depth. https://developer.
nvidia.com/blog/nvidia-ampere-architecture-in-depth/.

[42] Scott Levy, Kurt B. Ferreira, Nathan DeBardeleben, Taniya Siddiqua, Vilas Srid-
haran, and Elisabeth Baseman. 2018. Lessons Learned from Memory Errors
Observed over the Lifetime of Cielo. In Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis (SC).
43:1–43:12.

[43] C. Lim, H. S. Jeong, G. Bak, S. Baeg, S. J. Wen, and R. Wong. 2015. Stuck Bits Study
in DDR3 SDRAMs Using 45-MeV Proton Beam. IEEE Transactions on Nuclear
Science 62, 2 (2015), 520–526.

[44] C. Lim, K. Park, and S. Baeg. 2017. Active Precharge Hammering to Monitor
Displacement Damage Using High-Energy Protons in 3x-nm SDRAM. IEEE
Transactions on Nuclear Science 64, 2 (2017), 859–866.

[45] Shu Lin and Daniel J Costello. 2004. Error Control Coding (second ed.). Prentice
Hall.

[46] Caio Lunardi, Fritz Previlon, David Kaeli, and Paolo Rech. 2018. On the Efficacy
of ECC and the Benefits of FinFET Transistor Layout for GPU Reliability. IEEE
Transactions on Nuclear Science 65, 8 (2018), 1843–1850.

[47] Florence Jessie MacWilliams and Neil James Alexander Sloane. 1977. The Theory
of Error Correcting Codes. Vol. 16. Elsevier.

[48] Georgios Mappouras, Alireza Vahid, Robert Calderbank, Derek R Hower, and
Daniel J Sorin. 2017. Jenga: Comprehensive Fault Tolerance for Stacked DRAM. In
Proceedings of the International Conference on Computer Design (ICCD). 361–368.

[49] Prashant J. Nair, David A. Roberts, and Moinuddin K. Qureshi. 2016. Citadel:
Efficiently Protecting Stacked Memory from TSV and Large Granularity Failures.
ACM Transactions on Architecture and Code Optimization (TACO) 12, 4 (2016),
49:1–49:24.

[50] B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers. 2016. A Large-Scale Study
of Soft-Errors on GPUs in the Field. In Proceedings of the International Symposium
on High Performance Computer Architecture (HPCA). 519–530.

[51] Thomas Norrie, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li, James
Laudon, Cliff Young, Norman P. Jouppi, and David Patterson. 2020. Google’s
Training Chips Revealed: TPUv2 and TPUv3. In Proceedings of the Symposium on
High Performance Chips (HOTCHIPS).

[52] NVIDIA. 2016. NVIDIA Tesla P100—The Most Advanced Data Center Accelerator
Ever Built Featuring Pascal GP100, the World’s Fastest GPU. http://www.nvidia.
com/object/pascal-architecture-whitepaper.html.

[53] NVIDIA. 2020. NVIDIA A100 Tensor Core GPU Architecture: Unprecedented Ac-
celeration at Every Scale. https://www.nvidia.com/content/dam/en-zz/Solutions/
Data-Center/nvidia-ampere-architecture-whitepaper.pdf.

https://www.amd.com/system/files/TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf
https://www.amd.com/system/files/TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf
https://www.techpowerup.com/gpu-specs/docs/amd-gcn1-architecture.pdf
https://www.techpowerup.com/gpu-specs/docs/amd-gcn1-architecture.pdf
https://www.crockford.com/base32.html
https://www.fujitsu.com/downloads/JP/jsuper/a64fx/a64fx_datasheet.pdf
https://www.fujitsu.com/downloads/JP/jsuper/a64fx/a64fx_datasheet.pdf
https://newsroom.aaa.com/2019/02/think-youre-in-your-car-more-youre-right-americans-spend-70-billion-hours-behind-the-wheel/
https://newsroom.aaa.com/2019/02/think-youre-in-your-car-more-youre-right-americans-spend-70-billion-hours-behind-the-wheel/
https://newsroom.aaa.com/2019/02/think-youre-in-your-car-more-youre-right-americans-spend-70-billion-hours-behind-the-wheel/
https://www.amd.com/system/files/documents/advanced-memory-device-correction.pdf
https://www.amd.com/system/files/documents/advanced-memory-device-correction.pdf
https://www.hpe.com/psnow/doc/4AA4-3490ENW
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/xeon-e7-family-ras-server-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/xeon-e7-family-ras-server-paper.pdf
https://www.iso.org/standard/51365.html
https://www.iso.org/standard/51365.html
https://www.linleygroup.com/mpr/login.php?return_url=/mpr/article.php?id=12379&num=6227
https://www.linleygroup.com/mpr/login.php?return_url=/mpr/article.php?id=12379&num=6227
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
http://www.nvidia.com/object/pascal-architecture-whitepaper.html
http://www.nvidia.com/object/pascal-architecture-whitepaper.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf

Characterizing and Mitigating Soft Errors in GPU DRAM MICRO ’21, October 18–22, 2021, Virtual Event, Greece

[54] Daniel Oliveira, Laércio Pilla, Nathan DeBardeleben, Sean Blanchard, Heather
Quinn, Israel Koren, Philippe Navaux, and Paolo Rech. 2017. Experimental
and Analytical Study of Xeon Phi Reliability. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis
(SC).

[55] M. Park, S. Jeon, G. Bak, C. Lim, S. Baeg, S. Wen, R. Wong, and N. Yu. 2017. Soft
Error Study on DDR4 SDRAMs Using a 480 MeV Proton Beam. In Proceedings of
the International Reliability Physics Symposium (IRPS). SE–3.1–SE–3.6.

[56] Suresh Ramalingam. 2026. HBM Package Integration: Technology Trends, Chal-
lenges and Applications. In Proceedings of the Symposium on High Performance
Chips (HOTCHIPS).

[57] Minsoo Rhu, Michael Sullivan, Jingwen Leng, and Mattan Erez. 2013. A Locality-
Aware Memory Hierarchy for Energy-Efficient GPU Architectures. In Proceedings
of the International Symposium on Microarchitecture (MICRO). 86–98.

[58] A. Rodriguez, F. Wrobel, A. Michez, A. Touboul, F. Bezerra, R. Ecoffet, E. Lorfèvre,
and F. Saigné. 2016. TCAD Simulations of Leakage Currents Induced by SDRAM
Single-Event Cell Degradation. In Proceedings of the European Conference on
Radiation and Its Effects on Components and Systems (RADECS). 1–5.

[59] A. Rodriguez, F. Wrobel, A. Samaras, F. Bezerra, B. Vandevelde, R. Ecoffet, A.
Touboul, N. Chatry, L. Dilillo, and F. Saigne. 2015. Proton-Induced SDRAM Cell
Degradation. In Proceedings of the European Conference on Radiation and Its Effects
on Components and Systems (RADECS). 1–4.

[60] C. Slayman. 2011. Soft Error Trends and Mitigation Techniques in Memory
Devices. In Proceedings of the Reliability and Maintainability Symposium (RAMS).
1–5.

[61] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve, Saurabh
Bagchi, Pavan Balaji, Jim Belak, Pradip Bose, Franck Cappello, Bill Carlson, An-
drew A Chien, Paul Coteus, Nathan A DeBardeleben, Pedro C Diniz, Christian
Engelmann, Mattan Erez, Saverio Fazzari, Al Geist, Rinku Gupta, Fred Johnson,
Sriram Krishnamoorthy, Sven Leyffer, Dean Liberty, Subhasish Mitra, Todd Mun-
son, Rob Schreiber, Jon Stearley, and Eric Van Hensbergen. 2014. Addressing
Failures in Exascale Computing. The International Journal of High Performance
Computing Applications 28, 2 (2014), 129–173.

[62] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B. Ferreira, Jon
Stearley, John Shalf, and Sudhanva Gurumurthi. 2015. Memory Errors in Modern
Systems: The Good, The Bad, and The Ugly. In Proceedings of the International

Symposium on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 297–310.

[63] Vilas Sridharan and Dean Liberty. 2012. A Study of DRAM Failures in the Field.
In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC).

[64] Vilas Sridharan, Jon Stearley, Nathan DeBardeleben, Sean Blanchard, and Sud-
hanva Gurumurthi. 2013. Feng Shui of Supercomputer Memory: Positional Effects
in DRAM and SRAM Faults. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis (SC).

[65] Synopsys Inc. 2019. Design Compiler P-2019.03.
[66] Devesh Tiwari, Saurabh Gupta, George Gallarno, Jim Rogers, and Don Maxwell.

2015. Reliability Lessons Learned from GPU Experience with the Titan Super-
computer at Oak Ridge Leadership Computing Facility. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC).

[67] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai, D. Oliveira, D.
Londo, N. DeBardeleben, P. Navaux, L. Carro, and A. Bland. 2015. Understanding
GPU Errors on Large-Scale HPC Systems and the Implications for System Design
and Operation. In Proceedings of the International Symposium on High Performance
Computer Architecture (HPCA). 331–342.

[68] Alyson D Topper, Michael J Campola, Dakai Chen, Megan C Casey, Ka-Yen Yau,
Donna J Cochran, Kenneth A LaBel, Raymond L Ladbury, Timothy K Mondy,
Martha V O’Bryan, et al. 2017. Compendium of Current Total Ionizing Dose
and Displacement Damage Results from NASA Goddard Space Flight Center and
NASA Electronic Parts and Packaging Program. In IEEE Radiation Effects Data
Workshop (REDW). 1–11.

[69] Wikipedia. 2020. Random-Access Memory. https://en.wikipedia.org/wiki/
Random-access_memory#DRAM. [Online; accessed 24-November-2020].

[70] R. Zimmermann. 1999. Efficient VLSI Implementation of Modulo (2n±1) Addition
and Multiplication. In Proceedings of the IEEE Symposium on Computer Arithmetic.
158–167.

[71] S. M. Zulkifli, B. Zee, W. Qiu, and A. Gu. 2017. High-Res 3D X-ray Microscopy for
Non-Destructive Failure Analysis of Chip-to-Chip Micro-Bump Interconnects in
Stacked Die Packages. In Proceedings of the International Symposium on Physical
and Failure Analysis of Integrated Circuits (IPFA). 1–5.

https://en.wikipedia.org/wiki/Random-access_memory#DRAM
https://en.wikipedia.org/wiki/Random-access_memory#DRAM

	Abstract
	1 Introduction
	2 Background
	2.1 Neutron Beam Testing
	2.2 GPU DRAM Organization
	2.3 Soft Error Trends in DRAM
	2.4 The Structure of HBM2 Memory
	2.5 Permanent DRAM Errors
	2.6 Error Correcting Codes

	3 Methodology
	4 Intermittent Errors in HBM2
	5 Measured Soft Error Patterns
	6 Improvements to HBM2 ECC
	6.1 Binary ECC Code Designs
	6.2 Symbol-Based ECC Code Designs
	6.3 Hardware Implementations

	7 Resilience and Overheads
	7.1 Resilience Per Event
	7.2 Hardware Overheads
	7.3 System-Level Resilience and Availability

	8 Conclusion
	References

