
Low-Cost DuplicateMultiplication
Michael B. Sullivan

The University of Texas at Austin
Austin, TX 78712

Email: mbsullivan@utexas.edu

Earl E. Swartzlander, Jr.
The University of Texas at Austin

Austin, TX 78712
Email: eswartzla@aol.com

Abstract—Rising levels of integration, decreasing component re-
liabilities, and the ubiquity of computer systems make error protec-
tion a rising concern. Meanwhile, the uncertainty of future fault and
error modes motivates the design of strong error detection mecha-
nisms that offer fault-agnostic error protection. Current concurrent
hardware mechanisms, however, either offer strong error detection
coverage at high cost or restrict their coverage to narrow synthetic
error models. This paper investigates the potential for duplication
using alternate number systems to lower the costs of duplicated mul-
tiplication without sacrificing error coverage. Two examples of such
low-cost duplication schemes are described and evaluated; it is shown
that specialized carry-save or residue number system checking can be
used to increase the efficiency of duplicated multiplication.

Index Terms—Low-Cost Duplication, Dual Modular Redundancy,
Low-Cost Error Detection, Concurrent Error Detection, Self-testing
and Self-checking Circuitry, Computer Arithmetic.

I. Introduction

Shrinking feature sizes and the importance of computer systems
make error protection a rising concern. Significant uncertainty
remains with respect to the type and rate of errors expected in
future systems, however [1], [2], [3], [4], complicating the design
and analysis of reliability schemes.The focus of this research is to
investigate the costs and benefits of strong, holistic error detection
for multiplication that is not restricted to a narrow fault or error
model. The concept of low-cost duplication is described and
evaluated—organizations of duplicate checkers that use alternate
number systems and redundant or carry-free arithmetic to avoid
the limitations of duplication while preserving its strengths.
This paper is structured as follows. Section I reviews what

can go wrong with arithmetic and describes the strengths and
weaknesses of simple duplication. Section I-C describes a novel
class of arithmetic error detectors based on a principle called low-
cost duplication. Section II and Section III present prior work
and the experimental methodology of this research, respectively,
and Section IV investigates the design and overheads of using
specialized carry-save checkers in low-cost duplicate multipliers.
It is shown that carry-save duplication lowers the costs of du-
plication in a straightforward manner without sacrificing error
coverage, checking latency, or separability. Section V investigates
an alternate low-cost duplicate multiplier that uses the residue
number system to good effect. Finally, Section VI explores some
exciting future avenues that extend the results of this research.

A. Arithmetic Faults and Errors
This paper adopts the established terminology that a fault is a

physical phenomenon or defect that may cause an error or failure,

an error is a discrepancy between the intended and actual data
in a system, and a failure is an instance in time when a system
displays a behavior that is contrary to its specification [5], [6].
A plethora of faults can cause arithmetic errors; the rate and
severity of these faults is unknown in current technologies, and
this uncertainty is exacerbated by the unpredictability of future
technology challenges and limitations [7], [8], [9], [10], [11].

The faults that can affect arithmetic include, but are not
limited to: transient faults caused by high energy particles in the
environment [12], [8]; end-of-life gate oxide faults due to electro-
migration [13], hot carrier degradation [14], or time-dependent
oxide breakdown [15], [9]; timing violations due to voltage
droop [16], [17] or age and temperature-related slowdown [10],
[18]; fabrication-related faults due to manufacturing defects [11]
or technology variability [19]; and uncaught design faults due to
insufficient testing [20] or insufficient cooling [21].

The typical approach to arithmetic error detection is either
to attempt a best-effort mechanism with incomplete error cov-
erage, such as residue checking [22], or to try and select the
most prevalent faults and to deal with them using specialized
mechanisms. Examples of such specialized mechanisms include
error detectors for transient faults [23], [24], gate oxide faults [25],
timing violations [26], [27], fabrication-related faults [28], and
design faults [29].

While specialized error detection mechanisms boast low area
and energy overheads, their use in a comprehensive arithmetic er-
ror detection scheme is fraught with difficulty. Choosing themost
prevalent fault mode can be costly and difficult, especially given
the uncertainty of future technologies, use-cases, environmental
conditions, and design constraints. Also, whether and how a fault
manifests as an error is strongly design dependent. This design
dependence introduces additional development complexity—
specialized or best-effort error detection mechanisms must
sometimes dictate or react to the arithmetic unit design to have
high coverage, and there can be a tradeoff between arithmetic
unit optimization and error coverage [30].

In lieu of using such detectionmechanisms, this work proposes
the use of duplication for holistic, fault-agnostic arithmetic error
detection.The high error coverage of duplication avoids the need
to tailor error detection towards the most severe and prevalent
errors, lessening the onus of fault rate analysis, error modeling,
and system-level error propagation and failure modeling on the
chip designer.

Main

Mult

Equality Check

A

B

Error?

Output

Check

Mult

(a) Strict Duplication

Main
Mult

Modi�ed
Equality Check

A

B
Error?

Output

Low-Cost

Mult

(b) Low-Cost Duplication

Fig. 1: A block diagram of a simple, strict duplicate multiplier and a
low-cost duplicate multiplier. Simple duplication replicates the
logic of the main multiplier, resulting in high area and energy
overheads and incomplete coverage against correlated faults. Low-
cost duplication makes use of carry-free arithmetic, diversified
design, and any extra detection slack to reduce the costs of
duplication and possibly increase its error coverage.

B. The Benefits and Limitations of Duplication
Concurrent error detection through duplicated execution

and equality testing (also known as dual modular redundancy
[DMR]) is a simple and well-known mechanism with many
advantages. Figure 1a shows a block diagram of a simple DMR
organization (called strict duplication) that uses a duplicate
multiplier to check the results of computation. Duplication
provides strong, low-latency error detection while maintaining
complete design modularity and separability—no interaction
is needed with the main arithmetic unit, and the duplicate
error detector does not dictate or alter the on-chip storage or
data movement sub-systems. The simplicity and separability of
duplication facilitates its design and implementation, and its
low detection latency can simplify higher-level error recovery
mechanisms [31], [32].
Despite its various benefits, duplication suffers from some

serious limitations. First and foremost, the high area and energy
overheads of full duplication preclude it from being a realistic
error detection scheme for most computers. Duplication has only
been employed in specialized processors where reliability is of
paramount importance, surpassing the need for efficiency [33],
[34], [35], [36], [37]; even IBM uses alternative arithmetic error
detection mechanisms in some of its notoriously reliable main-
frame computers for increased efficiency [38], [39], [40].

In its simplest form, full duplication can also have incomplete
coverage against certain faults. Timing violations, design faults,
and fabrication faults can possibly affect both themain arithmetic
unit and duplicate check unit, escaping error detection and
possibly resulting in silent data corruption or a system failure.

C. Low-Cost Duplication
The goal of low-cost duplication is to preserve the various

strengths of DMR while lessening its limitations. This paper
investigates the potential of duplicate multipliers to employ
alternate number representations that achieve superior efficiency.

Because the output of the duplicate unit is discarded after error
detection, many of the costs traditionally associated with non-
standard number systems (such as the data movement and
storage costs of redundant arithmetic or the costly conversion
back to a weighted format) can largely be ignored. Figure 1b
shows the organization of a low-cost duplicate checker. A low-
cost duplicate multiplier employs an alternate number system
to perform efficient multiplication, and the equality checker is
modified to compare the output of the main multiplier with the
alternate encoding of the low-cost unit.
While the primary goal of this research is to reduce the

overheads of duplication, it is noted that low-cost duplication
is amenable to closing the potential coverage holes of strict
duplication1. A well-known way to detect design and fabrication
faults is to ensure design diversity between the main arithmetic
unit and checker [5]; this approach has been recognized since
the beginning of mechanical computation [41], [5] and has been
used to target hardware bugs [29]. Since the most efficient main
arithmetic unit should be employed, however, diversified dupli-
cation normally implies some inefficiency. Low-cost duplication
makes use of redundancy and alternate number representations
in the checker, and is naturally diversified by construction. As the
results of the duplicate low-cost checker are in an alternate en-
coding, low-cost duplication can be more efficient than the main
arithmetic unit despite this diversification. Timing violations can
be correctly diagnosed by keeping all checking circuitry well off
of the circuit’s critical path [25].With traditional duplication, this
implies some additional checking latency. By utilizing alternate
number systems, low-cost duplication may be able to operate
faster than the main arithmetic unit and thus be non-critical
without additional checking latency.

Low-cost duplicate units can be thought of in two ways.
First, low-cost duplication can be considered as a more efficient
replacement for DMR in systems demanding high reliability and
availability—in fact, its substantive cost savings may even make
low-cost duplication a viable approach in systems where DMR
is prohibitively costly. Alternatively, low-cost duplication can be
thought of as a more optimized baseline for the evaluation of
specialized or best-effort error detection mechanisms. Currently,
the assumption is often made that concurrent, low-latency dupli-
cation requires >100% implementation overheads. This research
suggests, however, that with careful design this may not always
be the case.

II. Prior Work

A. Low-Cost Duplicate Addition
Redundant carry-save addition has been used to check the

result of a fast adder [42]. This prior work can be thought of
as low-cost duplication for addition; this research extends the
concept to check the results of multiplication. The modified
equality checkers for that are used in this work for carry-save
numbers are similar to the carry-free circuits used elsewhere [43],
[44], [45], [42] for carry-save arithmetic.

1While the efficacy of low-cost duplication for problematic faults is noted, a
full error coverage evaluation is left for future work.

2

B. Lazy Duplication
Prior research has employed a simplified, long-latency dupli-

cate unit to detect errors in arithmetic [29], [46].This work differs
from low-cost duplication in two respects. First, these duplicate
units perform arithmetic in the same number representation as
the main arithmetic unit, and do not fit the definition of a special-
ized low-cost duplicate unit considered in this paper. Also, this
research aims tomaintain the low-latency error detection of strict
duplication in order to simplify implementation, cheapen higher-
level recovery, and avoid a dependence on aggressive latency-
tolerant microarchitectural features to lessen performance loss.
In order to evaluate the merits of lazy duplication in the context
of low-latency error detection, experiments include baselines that
are allowed to utilize any available slack to lower their overheads.

C. Residue Checking
Any study of error detection for multiplication would be

remiss if it did not mention residue checking. Addition, subtrac-
tion, and multiplication can be checked by testing the equality
of Equation 1, where |X|m=Xmodm and⊕ denotes the protected
operation [22]. If both sides of Equation 1 are equal, it is likely
that no error has occurred. If they are not equal, then some error
has occurred.

|X ⊕Y |m
?= ||X|m⊕ |Y |m|m (1)

The error coverage of a residue code depends on the width
of its checking modulus. In general, large checking moduli
are prohibitively expensive, such that residue checking suffers
from some coverage holes [47], [30]. It is likely that low-cost
duplication will have a lower latency2 and higher error coverage
than residue checking, at the expense of more checking hardware.
It is possible to use multiple co-prime moduli in a multi-

residue code for higher error coverage [48], [49]. Low-cost RNS
duplication (Section V) can be thought of as a fully parallel
multi-residue code with a dynamic range large enough to have
complete error coverage. In this context, it is obvious that (multi)
residue checking can be less expensive than RNS duplication, but
with incomplete error coverage against severe single-component
errors.

III. Experimental Methodology
The remainder of this paper focuses on the design and imple-
mentation of low-cost duplicate checkers. Before these contri-
butions, the experimental methodology used throughout the
paper is described. Gate-level design space exploration is used
to examine the area and energy required for each circuit. The
Synopsys toolchain is used for synthesis, targeting the 40nm
TSMC standard cell library [50], [51]. All circuits are compiled
using the Synopsys Design Compiler with high mapping effort
and optimization options consistent with an area-optimized
implementation. Structural Verilog descriptions of each circuit
are used throughout, with compressor-based multipliers and

2The higher latency of residue checking relative to low-cost duplication
comes from the need to generate the residue of the result before checking. The
latency of residue generation is inversely proportional to the modulus width,
such that the checking latency is greatest for the smallest residue codes.

TABLE I: The baseline multipliers selected for this work.

Width (N) Critical
Latency [ns]

AT-Efficient
Latency [ns]

AT-Efficient
Area [µm2]

16 1.21 1.25 03547.8
32 1.70 1.73 12937.9
64 2.30 2.34 38179.8

minimum-depth parallel prefix adders. The Synopsys Design
Compiler provides area (in µm2) and timing (in ns) estimates for
each design. A TSMC wire model is used for timing estimates,
and it is assumed that each circuit is driven by, and drives, a
pipeline register. Dual-rail encoded equality checkers are used at
the output of error detection to create totally self-testing designs.

A. The Baseline Multipliers
Three efficient unsigned binarymultipliers are selected to serve

as the main arithmetic unit baselines at 16, 32, and 64 bits. The
Pareto-optimal (over area and time) post-synthesis design which
minimizes the AT metric is chosen at each word length through
a search of the design space. Table I gives the properties of the
selected baselines.

B. Strict and Lazy Duplication
Two baseline DMR organizations are considered: strict dupli-

cation, which uses a mirrored multiplier for checking, and lazy
duplication, which uses any extra detection latency to reduce the
cost of the duplicate multiplier. Figure 2 visualizes both strict and
lazy duplication. A typical parallel fixed-point multiplier goes
through three steps of computation: partial product generation,
the multi-operand addition of the partial products, and the carry-
propagate addition of the redundant carry-save product. The
steps of a multiplier are shown over time along with the steps of
a duplicated checker. Strict duplication proceeds in lockstep with
the main multiplier; lazy duplication utilizes the extra checking
latency for modest cost savings.
Strict duplication requires a 30–20% detection latency and

102.8%, 102.3%, and 101.2% area overheads to protect the 16,
32, and 64-bit multipliers, respectively. This reduction in relative
overheads with increasing word length is due to the quadratic
scaling behavior of parallel multipliers—the dual-rail equality
checker scales linearly, such that its contribution to the total area
becomes smaller.

The >100% implementation overheads of strict duplication are
consistent with many prior assumptions about DMR organiza-
tions, but the overheads of duplication can be easily decreased by
utilizing extra detection latency. Later, Table II gives the estimated
overheads for lazy duplication. Lazy duplication considerably
lowers the overheads of strong error detection by utilizing any
available slack, but it may still require a prohibitive amount of
overhead for many applications. Conversely, lazy duplication
may demand too much detection latency to achieve a sufficient
efficiency; Section IV shows that carry-save duplication amends
this deficiency.

IV. Carry-Save Low-Cost Duplication
A simple and straightforward scheme for low-cost duplicate

multiplication is to eliminate the final carry-propagate adder

3

Carry-Prop.
Addition

PP
Gen

PP
Gen

Multi-Operand
Addition

Multi-Operand
Addition

Carry-Prop.
Addition

Equality
Checker

(a) Strict Duplication Visualization

Carry-Prop.
Addition

PP
Gen

PP
Gen

Multi-Operand
Addition

Multi-Operand
Addition

Equality
Checker

Carry-Prop.
Addition

(b) Lazy Duplication Visualization

Fig. 2: Strict duplication uses amirroredmultiplier for checking, whereas
lazy duplication utilizes any extra detection latency to reduce the
complexity of the duplicate multiplier. Simple timing diagrams
are shown for a multiplier; the relative time spent in each step of
computation is not accurate and is for visualization purposes.

in the duplicate multiplier, checking its result directly in the
redundant carry-save representation. This scheme is referred to
as lazy carry-save duplication.
Lazy carry-save duplication can increase efficiency over tra-

ditional lazy duplication in two ways. First, the cost of a carry-
propagate adder is replaced with a slight increase in the complex-
ity of the modified checker; the cost increase of the checker is
strictly equal to or less than that of the carry-propagate adder,
leading to some savings [42]. Second, and more notably, the
latency of carry-propagate addition is avoided; this additional
checking slack may be used to reclaim checking efficiency in
a manner similar to lazy duplication. The latency of this carry-
propagation is significant, taking roughly a third of the time
for a logarithmic-time multiplication3. A visualization of the
carry-save duplication process is shown in Figure 3a. A bit-sliced
modified checker (Figure 3b) is used to check the results of
multiplication, similar to its application in [42], [52].

Table II evaluates the cost of both lazy and lazy carry-save dupli-
cation. The benefits of lazy carry-save duplication are significant
and robust; several trends are of note. Carry-save duplication
adds some additional latency relative to the fastest strict or lazy
duplicate designs due to the need to perform modified checking
following the main multiplication. For any achievable detection
latency, carry-save duplication shows superior efficiency to lazy
duplication, achieving roughly the same area efficiency as a lazy
duplicate design with 30% additional detection slack.
The cost savings of carry-save duplication saturate quickly,

such that it is neither necessary nor profitable to increase the
checking latency past 30–40%. This is because there is sufficient
slack in the absence of duplicate carry-propagate addition to
use the least expensive standard cells at this point. For this

3The 16, 32, and 64-bit baselines spend roughly 28%, 37%, and 29% of their
time performing the carry-propagate addition, respectively.

Carry-Prop.
Addition

PP
Gen

PP
Gen

Multi-Operand
Addition

Modi�ed
Checker

Multi-Operand
Addition

(a) Lazy Carry-Save Duplication Visualization

Z

FA

A B CI

SCO

C S

CinCout

Err

(b) A Slice of the Modified Carry-Save Checker

Fig. 3: Carry-propagate addition can be eliminated in the duplicate
multiplier by employing a modified equality checker. One slice of
the modified equality checker is shown.

TABLE II: The overheads of lazy and lazy carry-save duplication. Lazy
carry-save duplication avoids the need for carry-propagate
addition in the duplicate unit, increasing efficiency.

Width
(N)

Detection
Latency (%)

Lazy Area
[µm2] (+%)

Lazy CS Area
[µm2] (+%)

16
40 02448.4 (69.0) 01869.8 (52.7)
50 02273.8 (64.1) 01665.2 (46.9)
60 02093.2 (59.0) 01670.9 (47.1)

32

30 09672.9 (74.8) 07306.8 (56.5)
40 08380.9 (64.8) 06989.8 (54.0)
50 07855.8 (60.7) 06899.5 (53.3)
60 07299.6 (56.4) 06899.5 (53.3)

64

30 33760.2 (88.4) 28118.6 (73.6)
40 30698.8 (80.4) 27625.9 (72.4)
50 29834.2 (78.1) 27625.9 (72.4)
60 28153.1 (73.7) 27625.9 (72.4)

reason, lazy duplication and carry-save duplication asymptote
to the same efficiency; carry-save duplication just gets there
more quickly. The use of a slower and more area-efficient design
(or the use of a flexible delay-proportional multiplier, such as
the DesignWare PPArch multiplier [53]) would almost certainly
allow for carry-save duplication to provide detection latency-
proportional savings.

A. Carry-Save Karatsuba Duplication
The implementation of carry-save multiplication is straightfor-

ward for a fully parallel, tree-based multiplier like the considered
baselines. There are alternative multiplier architectures, however,
where the adoption of carry-save checking is slightly more
nuanced. With careful design, carry-save checking can apply
to a wide class of parallel multipliers. This section demonstrates

4

TABLE III: The overheads of lazy and carry-save Karatsuba duplication
(relative to a baseline Karatsuba multiplier).

Width
(N)

Detection
Latency (%)

Lazy Area [µm2]
(+%)

Lazy Carry-Save
Area [µm2] (+%)

20 02651.1 (66.7) 01988.9 (50.0)
30 02234.1 (56.2) 01799.1 (45.3)
40 01834.9 (46.2) 01697.5 (42.7)
50 01752.9 (44.1) 01693.6 (42.6)
60 01712.0 (43.1) 01693.6 (42.6)

32

10 09888.4 (89.8) N/A
20 09652.1 (87.7) 06800.7 (61.8)
30 07531.7 (68.4) 06183.3 (56.2)
40 06532.1 (59.3) 06044.7 (54.9)
50 06221.2 (56.5) 05908.5 (53.7)
60 06088.2 (55.3) 05888.2 (53.5)

64

10 32499.5 (91.0) N/A
20 30662.8 (85.9) 24355.4 (68.2)
30 27025.9 (75.7) 23073.2 (64.6)
40 24932.4 (69.8) 22947.2 (64.3)
50 23534.6 (65.9) 22827.1 (63.9)
60 23146.7 (64.8) 22812.8 (63.9)

the flexibility of carry-save duplication through its application to
a Karatsuba multiplier.
Karatsuba multiplication (originally attributed to [54]) is a

divide-and-conquer scheme that is able to perform N-bit fixed-
point multiplication using three N

2 -bit multipliers by exploiting
Identity 2 (where aH , aL, bH , and bL represent the high and low
halves of the input operands a and b, respectively) [55].
�

2
N
2 aH +aL
��

2
N
2 bH +bL
�

= 2NaHbH +aLbL+ (2)

2
N
2 ((aH +aL) (bH +bL) –aHbH –aLbL)

Karatsuba multiplication can be somewhat area efficient at large
word lengths, since the area of parallel multiplication tends
to scale quadratically and it replaces a full N-width multiplier
with just three smaller N

2 multipliers [55]. However, hidden
in the 2 N

2 ((aH +aL) (bH +bL) –aHbH –aLbL) term of Karatsuba
multiplication is a lengthy adder carry propagation before the
results of (aH +aL) (bH +bL) can be determined. This additional
latency negatively impacts the overall efficiency of the scheme.

An optimized Karatsuba baseline is used that avoids many of
the latency issues with the (aH +aL) (bH +bL) term. By slightly
modifying the multiplier, the inner subtractions (–aHbH –aLbL)
can be performed without any carry propagation. This is done as
follows: a regularCSA is usedwith complemented inputs from the
aHbH and aLbL multipliers. The two incrementations necessary
for two’s complement arithmetic are achieved in a carry-free
manner by (1) setting the empty carry bit in the least-significant
position of the CSA and (2) placing an extra bit in the partial
product generation of the (aH +aL) (bH +bL) multiplier. Neither
incrementation has any impact on the latency or complexity of
the resultant duplicate multiplier.

Carry-save Karatsuba duplication uses a carry-save checker for
the final addition of the constituent subcomponents, as shown
in Figure 4. Table III evaluates the overheads of both lazy and
carry-free Karatsuba duplication relative to 16, 32, and 64-bit
baseline Karatsuba multipliers. Again, carry-save duplication

-bit
Low
Mult

-bit
High
Mult

N-bit

Main

Mult

Modi�ed

Equality Check

A

B
Error?

Output

N
2

N
2

Add

-bit Add, Carry-Save
Multiply +1

N
2

-bit
CS

Mult

N
2

Reduce + 1

Fig. 4: Karatsuba multiplication can perform an N-bit fixed-point mul-
tiplication using three N

2 -bit multipliers. Carry-free duplication
uses amodified checker to eliminate the carry-propagate addition
of the sub-components.

shows consistent, robust efficiency improvements. By avoiding
the latency of the final carry-propagate addition, carry-save
duplication is able to reach the efficiency of the asymptotic
lazy checker with about a 20% detection latency; it takes lazy
duplication 20–30% more slack to compete.

V. Residue Number System Duplication

A compelling low-cost duplication alternative using the residue
number system (RNS) is described and evaluated. Before delving
into the details of RNS duplication, the basics of the residue
number system are reviewed.⁴
The residue number system represents integer values using a

small number of non-weighted digits. An RNS number is formed
from a weighted number, X with respect to a set of n co-prime
bases,
�

m0|m1|...|mn–1
�

. To convert to the RNS representation, the
residue of X is formed with respect to each base. In general, the
formation of an arbitrary residue

�

|X|m ;m ∈N
�

is expensive; for
efficiency, designs often restrict themselves to specialized moduli
in the formm = 2a±1, a ∈N. Common arithmetic operations can
be performed without carry propagation between the digits of
RNS numbers, significantly increasing the speed. Operations
within each digit are carried out in a modular manner such
that the arithmetic result for the RNS digit corresponding to

⁴This short summary is felt to be sufficient in the context of low-cost
duplication. For a more formal introduction, the reader is referred to [56].
For a comprehensive treatment of RNS arithmetic, see [57], [58], [59].

5

Main
Mult

Modi�ed
Equality Check

A

B
Error?

Output

Low-Cost RNS
Check Mult

RNS

Gen

Fig. 5: A block diagram of RNS duplication. Multiplication on an RNS-
encoded number can proceed more quickly than its fixed-point
counterpart; this extra slack can lead to overall cost savings.

a modulus m is computed as |X ⊕Y |m = ||X|m⊕ |Y |m|m, where
⊕∈ {+,–,∗}.

Despite their fast arithmetic speed, the general-purpose useful-
ness of RNS numbers is greatly limited by practical concerns: bit-
wise logical operations, truncation, division, sign detection and
magnitude comparison are all expensive in this representation,
as is the conversion back to a fixed-point format. Low-cost
duplicate RNS multiplication is able to exploit the superior
speed and diversified design of the residue number system while
avoiding the aforementioned limitations. Because the output of
the duplicate RNS unit is discarded after error detection, no
expensive operations are performed nor is backwards conversion
necessary. Figure 5 shows an organization of RNS duplication—
the input operands are converted to the RNS representation,
and the modular arithmetic for each RNS modulus proceeds in
parallel.

To evaluate the idea of RNS duplication, an RNS duplicate mul-
tiplier is formed.The residue generator circuitry from [60] is used
along with the parallel modular multipliers from [61] (mod 2a–1)
and [62] (mod 2a+1). Following the recommendations of [63], a
moduli set in the form

�

2a–1, 2a+1, 2b
	

is employed. Table IV
shows the overheads of RNS duplication, along with the moduli
sets used⁵. The experimental results indicate that the speed
advantages of RNS arithmetic provide modest cost savings in the
duplicatemultiplier through increased design slack. Also, because
RNS arithmetic is faster than the main multiplication, there is
sufficient slack to saturate these benefits at 30–40% detection
latencies and further detection latency does not significantly
lessen the overheads of detection.

Despite the increased speed of RNS multiplication, no drastic
simplification of the duplicate multiplier is seen. A nuanced

⁵These moduli sets were chosen through a brief computer-guided search
and are expected to be aggressive but not optimal.

TABLE IV: The overheads of RNS duplication (relative to
the compressor-based fully parallel multiplier).

Width
(N)

Checking
Latency (%)

Modulus 1
(2a ±1)

Modulus 2
(2b)

Area [µm2]
(+%)

16

30 5 23 01982.2 (55.9)
40 5 23 01974.4 (55.7)
50 9 15 01959.6 (55.2)
60 9 15 01913.9 (53.9)

32

30 18 29 08119.9 (62.8)
40 18 29 07323.4 (56.6)
50 17 31 07065.0 (54.6)
60 17 31 06957.2 (53.8)

64

30 41 47 33170.1 (86.9)
40 41 47 31410.9 (82.3)
50 41 47 29938.6 (78.4)
60 41 47 29040.2 (76.1)

fact about the RNS representation hints at why this is the case.
RNS multipliers typically take N-bit inputs and provide an N-bit
output, whereas two’s complement multipliers take N-bit inputs
and produce a 2N-bit result. This means that the duplicate RNS
multiplier providing 2N bits of dynamic range is somewhat over-
designed, and actually could accept 2N bit inputs (though in the
duplicate RNS organization such inputs will never occur).

These experimental results demonstrate that RNS duplication
can provide diversified, low-latency duplication that is completely
off of the critical path. This allows RNS duplication to provide
strong, fault-agnostic error detection. The efficiency of RNS
duplication is on par with that of lazy carry-save duplication
(Section IV). Furthermore, it is possible that the RNS organi-
zation and experimental methodology used in this study could
under-represent the potential efficiency of RNS duplication; Sec-
tion VI-A describes some of the future research that these initial
results warrant.

VI. Discussion
Low-cost duplication presents the opportunity for several excit-
ing avenues of future research. Some discussion of this potential
future work follows.

A. Further RNS Duplication Evaluation
There are several future experiments that may better represent

and analyze the potential advantages of RNS duplication. First,
it has been noted that some of the efficiency advantages of RNS
arithmetic come from its increased circuit regularity relative to
two’s complement arithmetic units [55]; these layout advantages
are not taken into account in this work for methodological
reasons. Also, initial experiments indicate that an RNS duplicate
multiplier can be faster than the main arithmetic unit, garnering
modest area savings.This high speed could be better exploited for
increased efficiency by more flexible modular multiplier designs
or by using a multi-Vth design flow where small and low power
(but slow) high Vth cells are mixed with their standard Vth
equivalents.

B. Alternate Number Systems and Organizations
The low-cost duplicate checkers described by this work are

based on carry-save andRNS arithmetic and by nomeans exhaust

6

the search space. Alternate low-cost duplicate checkers and
different organizations of the described checkers undoubtedly
exist. Some avenues of future research include other RNS organi-
zations, including the use of pseudo-residues [64] or redundancy
through non-coprime moduli [65], [66]. Also promising is the
investigation of other number systems where multiplication is
inexpensive, such as the logarithmic number system [67] (or
approximate binary logarithms [68]) and the use of index calculus
for inexpensive multiplication [69].

C. Security Applications
This study focuses on providing complete protection against

single component errors—any feasible arithmetic fault can be
detected so long as it is confined to either themain arithmetic unit
or the low-cost duplicate checker. This error model represents
complete protection against the rare, random, independent faults
that typically impact system reliability⁶. There is some interest in
the security community in detecting arbitrary component errors
to guard against laser fault injection, where a targetted fault is
induced by a nefarious agent [70], [71], [72]. While an analysis of
the security potential of low-cost duplication is outside the scope
of this study, it seems that the scheme may be a amenable to such
applications. This may be especially true for RNS duplication, as
the residue number system has a long pedigree of highly fault-
tolerant behavior [57], [55]—by adding an additional redundant
residue (and further modifying the equality checking circuit) it
should be possible to tolerate more than one component failure.

D. Stochastic or Timing-Speculative Computing
It may be possible to exploit the benefits of low-cost

duplication—strong, separable, low-latency error detection—
to operate with unreliable hardware [19], [73] or with reduced
timing and voltage margins [26], [27], increasing common-case
efficiency while preserving correctness. The strength of low-cost
duplication is crucial in such an approach, as it is necessary to
guarantee correctness in the presence of errors⁷. Separability
is important, as well, to allow for the most optimized and
efficient main arithmetic unit to be used. Finally, low-latency
error detection is important in this application, as the arithmetic
error rate will be artificially inflated and low-latency detection
cheapens fast microarchitectural replay [31].

VII. Conclusion
This paper describes low-cost duplication for error detection in
multiplication—a class of duplicate error detection mechanisms
that use specialized checkers to perform duplicate arithmetic
using alternative number systems. Two such low-cost duplicate
multipliers are evaluated that check results in a carry-save
and RNS representation. These low-cost duplicate multipliers
achieve superior efficiency in a straightforward manner without
sacrificing error coverage, error detection latency, or separability,
opening up exciting new avenues of future research.

⁶ As discussed in Section I-C, design faults, fabrication faults, and timing
violations may not be random and independent. Established techniques can be
used to handle such faults using low-cost duplication.

⁷ Some prior work investigates the use of residue checking for such a
purpose [74], but it cannot guarantee correctness.

Acknowledgments
This work is supported in part by the following organizations:
The National Science Foundation under Grant #0954107 and the
DOE FastForward 2 Program.

References
[1] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir, “Toward

Exascale resilience,” International Journal of High Performance Computing
Applications, vol. 23, no. 4, pp. 374–388, 2009.

[2] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir,
“Toward Exascale resilience: 2014 update,” Supercomputing frontiers and
innovations, vol. 1, no. 1, pp. 5–28, 2014.

[3] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technology
challenges,” in High Performance Computing for Computational Science.
Springer Berlin Heidelberg, Jan. 2011, no. 6449, pp. 1–25.

[4] X. Yang, Z. Wang, J. Xue, and Y. Zhou, “The reliability wall for Exascale
supercomputing,” IEEE Transactions on Computers, vol. 61, no. 6.

[5] A. Avizienis and J. Kelly, “Fault tolerance by design diversity: Concepts
and experiments,” Computer, vol. 17, no. 8, pp. 67–80, Aug. 1984.

[6] I. T. C. on Real-Time Systems”, “Terminology and Notations,”
http://tcrts.org/education/terminology-and-notation/, 2014.

[7] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi, “Modeling
the effect of technology trends on the soft error rate of combinational
logic,” in Proceedings of the International Conference on Dependable
Systems and Networks (DSN), 2002, pp. 389–398.

[8] T. Karnik and P. Hazucha, “Characterization of soft errors caused by single
event upsets in CMOS processes,” IEEE Transactions on Dependable and
Secure Computing, vol. 1, no. 2, pp. 128–143, 2004.

[9] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The impact of tech-
nology scaling on lifetime reliability,” in Proceedings of the International
Conference on Dependable Systems and Networks (DSN), 2004, pp. 177–186.

[10] D. K. Schroder and J. A. Babcock, “Negative bias temperature instability:
Road to cross in deep submicron silicon semiconductor manufacturing,”
Journal of Applied Physics, vol. 94, no. 1, pp. 1–18, Jul. 2003.

[11] J. W. McPherson, “Reliability challenges for 45nm and beyond,” in Pro-
ceedings of the Design Automation Conference (DAC), 2006, pp. 176–181.

[12] P. Dodd and L. Massengill, “Basic mechanisms and modeling of single-
event upset in digital microelectronics,” IEEE Transactions on Nuclear
Science, vol. 50, no. 3, pp. 583–602, June 2003.

[13] C.-K. Hu, D. Canaperi, S. Chen, L. Gignac, B. Herbst, S. Kaldor, M. Kr-
ishnan, E. Liniger, D. Rath, D. Restaino et al., “Effects of overlayers on
electromigration reliability improvement for cu/low k interconnects,” in
Proceedings of the International Reliability Physics Symposium, 2004, pp.
222–228.

[14] E. Takeda, R. Izawa, K. Umeda, and R. Nagai, “AC hot-carrier effects in
scaled MOS devices,” in Proceedings of the International Reliability Physics
Symposium, 1991, pp. 118–122.

[15] J. H. Stathis, “Reliability limits for the gate insulator in CMOS technology,”
IBM Journal of Research and Development, vol. 46, no. 2.3, pp. 265–286,
2002.

[16] P. Larsson, “Power supply noise in future IC’s: A crystal ball reading,”
in Proceedings of the Conference on Custom Integrated Circuits, 1999, pp.
467–474.

[17] V. J. Reddi, S. Kanev, W. Kim, S. Campanoni, M. D. Smith, G.-Y. Wei, and
D. Brooks, “Voltage noise in production processors,” IEEE micro, vol. 31,
no. 1, pp. 20–28, 2011.

[18] V. Reddy, A. T. Krishnan, A. Marshall, J. Rodriguez, S. Natarajan, T. Rost,
and S. Krishnan, “Impact of negative bias temperature instability on digital
circuit reliability,” Microelectronics Reliability, vol. 45, no. 1, pp. 31–38, Jan.
2005.

[19] S. Borkar, “Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation,” IEEE Micro, vol. 25,
no. 6, pp. 10–16, Nov. 2005.

[20] H. Sharangpani and M. Barton, “Statistical analysis of floating point flaw
in the Pentium processor,” Intel Corporation, Tech. Rep., 1994.

[21] “AMD reports potential heat problem with some Opteron chips,” Infor-
mation Week, April 2006.

[22] W. W. Peterson, “On checking an adder,” IBM Journal of Research and
Development, vol. 2, pp. 166–168, 1958.

[23] P. Ndai, A. Agarwal, Q. Chen, and K. Roy, “A soft error monitor
using switching current detection,” in Proceedings of the International
Conference on Computer Design (ICCD).

7

[24] A. Narsale and M. Huang, “Variation-tolerant hierarchical voltage moni-
toring circuit for soft error detection,” in Proceedings of the Symposium
on Quality of Electronic Design (ISQED).

[25] K. Constantinides, S. Plaza, J. Blome, B. Zhang, V. Bertacco, S. Mahlke,
T. Austin, and M. Orshansky, “BulletProof: a defect-tolerant CMP switch
architecture,” in Proceedings of the International Symposium on High
Performance Computer Architecture (HPCA), Feb. 2006, pp. 5–16.

[26] S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D. Bull,
and D. Blaauw, “RazorII: In situ error detection and correction for PVT
and SER tolerance,” IEEE Journal of Solid State Circuits (JSSC), vol. 44,
no. 1, pp. 32–48, Jan. 2009.

[27] J. Tschanz, K. Bowman, S. Walstra, M. Agostinelli, T. Karnik, and V. De,
“Tunable replica circuits and adaptive voltage-frequency techniques
for dynamic voltage, temperature, and aging variation tolerance,” in
Proceedings of the Symposium on VLSI Circuits.

[28] E. Böhl, T. Lindenkreuz, and R. Stephan, “The fail-stop controller AE11,”
in Proceedings of the International Test Conference (ITC), 1997, pp. 567–577.

[29] T. Austin, “DIVA: A reliable substrate for deep submicron microar-
chitecture design,” in Proceedings of the International Symposium on
Microarchitecture (MICRO), 1999, pp. 196–207.

[30] I. A. Noufal and M. Nicolaidis, “A CAD framework for generating
self-checking multipliers based on residue codes,” in Proceedings of the
Conference on Design, Automation, and Test in Europe (DATE), 1999.

[31] M. de Kruijf and K. Sankaralingam, “Idempotent processor architecture,”
in Proceedings of the International Symposium on Microarchitecture
(MICRO), 2011, pp. 140–151.

[32] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D. W. Kim, D. H. Yoon, L. Kaplan,
and M. Erez, “Containment Domains: A scalable, efficient, and flexible
resilience scheme for Exascale systems,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis (SC), Nov. 2012, pp. 1–11.

[33] J. Bartlett, J. Gray, and B. Horst, “Fault tolerance in Tandem computer
systems,” inThe Evolution of Fault-Tolerant Computing. Springer Vienna,
Jan. 1987, no. 1, pp. 55–76.

[34] M. Mueller, L. Alves, W. Fischer, M. Fair, and I. Modi, “RAS strategy for
IBM S/390 G5 and G6,” IBM Journal of Research and Development, vol. 43,
no. 5.6, pp. 875–888, 1999.

[35] L. Alves, M. Fair, P. Meaney, C. Chen, W. Clarke, G. Wellwood, N. Weber,
I. Modi, B. Tolan, and F. Freier, “RAS design for the IBM eServer z900,”
IBM Journal of Research and Development, vol. 46, no. 4.5, pp. 503–521,
2002.

[36] M. Fair, C. Conklin, S. Swaney, P. Meaney, W. Clarke, L. Alves, I. Modi,
F. Freier, W. Fischer, and N. Weber, “Reliability, availability, and service-
ability (RAS) of the IBM eServer z990,” IBM Journal of Research and
Development, vol. 48, no. 3.4, pp. 519–534, May 2004.

[37] D. Bernick, B. Bruckert, P. Vigna, D. Garcia, R. Jardine, J. Klecka,
and J. Smullen, “NonStop advanced architecture,” in Proceedings of the
International Conference on Dependable Systems and Networks (DSN), Jun.
2005, pp. 12–21.

[38] M. Hsiao, W. Carter, J. Thomas, and W. Stringfellow, “Reliability, Avail-
ability, and Serviceability of IBM Computer Systems: A Quarter Century
of Progress,” IBM Journal of Research and Development, vol. 25, no. 5, pp.
453–468, 1981.

[39] D. K. Pradhan, Ed., Fault-tolerant computing: Theory and technique.
Prentice Hall Inc., Old Tappan, NJ, 1986, vol. I.

[40] W. Clarke, L. Alves, T. Dell, H. Elfering, J. Kubala, C. Lin, M. Mueller, and
K. Werner, “IBM System z10 design for RAS,” IBM Journal of Research
and Development, vol. 53, no. 1, 2009.

[41] D. Lardner, “Babbage’s calculating engine,” Edinburgh Review, vol. 59, no.
120, pp. 263–327, 1834.

[42] M. B. Sullivan and E. E. Swartzlander, Jr., “Long Residue Checking for
Adders,” in Proceedings of the International Conference on Application-
specific Systems, Architectures and Processors (ASAP), July 2012, pp.
177–180.

[43] J. Cortadella and J. Llaberia, “Evaluation of A+B=K conditions without
carry propagation,” IEEE Transactions on Computers, vol. 41, no. 11, 1992.

[44] W. L. Lynch and G. R. Lauterbach, “Low-latency memory indexing
method and structure,” U.S. Patent US5 754 819 A, May, 1998. [Online].
Available: http://www.google.com/patents/US5754819

[45] P. Kornerup and D. W. Matula, Finite Precision Number Systems and
Arithmetic. Cambridge University Press, 2010.

[46] M. Hajkazem and A. Baniasadi, “A power-aware alternative for fault-
tolerant multipliers.”

[47] U. Sparmann and S. Reddy, “On the effectiveness of residue code checking
for parallel two’s complement multipliers,” IEEE Transactions on VLSI
Systems, vol. 4, no. 2, pp. 227–239, 1996.

[48] T. R. Rao and O. Garcia, “Cyclic and multiresidue codes for arithmetic
operations,” IEEE Transactions on Information Theory, vol. 17, no. 1, pp.
85–91, 1971.

[49] “Non-linear residue codes for robust public-key arithmetic,” in Fault
Diagnosis and Tolerance in Cryptography, no. 4236.

[50] Synopsys Inc., “Design Compiler I-2013.12-SP5-2.”
[51] Taiwan SemiconductorManufacturing Company, “40nmCMOS Standard

Cell Library v120b,” 2009.
[52] M. Sullivan and E. Swartzlander, Jr., “On separable error detection for

addition,” in Proceedings of The AsiloMar Conference on Signals and
Systems, 2013, pp. 2181–2186.

[53] A. H. Syed, “Performance of different multipliers in the DesignWare
building block IP,” Synopsys Inc.

[54] A. Karatsuba, “Multiplication of multidigit numbers on automata,” in
Soviet Physics Doklady, vol. 7, 1963, pp. 595–596.

[55] B. Parhami,Computer arithmetic: algorithms and hardware designs, 2nd ed.
Oxford University Press, 2010.

[56] H. L. Garner, “The residue number system,” IEEE Transactions on
Electronic Computers, vol. EC-8, pp. 140–147, 1959.

[57] N. S. Szabó and R. I. Tanaka, Residue Arithmetic and its Applications to
Computer Technology. New York: McGraw-Hill, 1967.

[58] P. A. Mohan, Residue number systems: algorithms and architectures.
Springer, 2002.

[59] A. Omondi and B. Premkumar,Residue number systems. World Scientific,
2007.

[60] C. Efstathiou, N.Moschopoulos, K. Tsoumanis, andK. Pekmestzi, “On the
design of configurable modulo 2n ±1 residue generators,” in Proceedings
of the Euromicro Conference on Digital System Design (DSD), 2012, pp.
50–56.

[61] R. Zimmermann, “Efficient VLSI implementation of modulo (2n ± 1)
addition and multiplication,” in Proceedings of the IEEE Symposium on
Computer Arithmetic, 1999, pp. 158–167.

[62] C. Efstathiou, H. T. Vergos, G. Dimitrakopoulos, and D. Nikolos, “Effi-
cient diminished-1 modulo 2n +1 multipliers,” in IEEE Transactions on
Computers, vol. 54, 2005, pp. 491–496.

[63] B. Parhami, “On equivalences and fair comparisons among residue
number systems with special moduli,” in Proceedings of The Asilomar
Conference on Signals and Systems, 2010.

[64] ——, “RNS representations with redundant residues,” in Proceedings of
The AsiloMar Conference on Signals and Systems, vol. 2.

[65] M. Abdallah and A. Skavantzos, “On the binary quadratic residue system
with noncoprime moduli,” IEEE Transactions on Signal Processing, vol. 45,
no. 8.

[66] A. Skavantzos and M. Abdallah, “Implementation issues of the two-level
residue number systemwith pairs of conjugatemoduli,” IEEETransactions
on Signal Processing, vol. 47, no. 3.

[67] E. E. Swartzlander, Jr. andA. G. Alexopoulos, “The sign/logarithmnumber
system,” IEEE Transactions on Computers, vol. 24, no. 12.

[68] J. N. Mitchell, “Computer multiplication and division using binary
logarithms,” IRE Transactions on Electronic Computers, vol. EC-11, no. 4.

[69] A. S. Fraenkel, “The use of index calculus and Mersenne primes for the
design of a high-speed digital multiplier,” Journal of the ACM, vol. 8, no. 1.

[70] E. Trichina and R. Korkikyan, “Multi fault laser attacks on protected
CRT-RSA,” inWorkshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC).

[71] Z. Wang, M. Karpovsky, and A. Joshi, “Secure multipliers resilient to
strong fault-injection attacks using multilinear arithmetic codes,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 6.

[72] D. Karaklajic, J. Schmidt, and I. Verbauwhede, “Hardware designer’s guide
to fault attacks,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 21, no. 12.

[73] K. Palem, “Energy aware computing through probabilistic switching: a
study of limits,” IEEE Transactions on Computers, vol. 54, no. 9.

[74] M. Neagu, G. Mois, and L. Miclea, “On-line error detection for tuning
dynamic frequency scaling,” in Proceedings of the International Conference
on Automation Quality and Testing Robotics (AQTR).

8

