
Mattan Erez, Supervisor

Earl E. Swartzlander, Jr., Supervisor

LOW-COST DUPLICATION
FOR SEPARABLE ERROR DETECTION

IN COMPUTER ARITHMETIC

by

Michael Brendan Sullivan, BA; BS; MS; MSE

DISSERTATION
Presented to the Faculty of the Graduate School of

The University of Texas at Austin
in Partial Fulfillment
of the Requirements
for the Degree of

DOCTOROF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
August 2015

Earl E. Swartzlander, Jr.

Mattan Erez

contents

Abstract iii

Contents iv

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Arithmetic Error Detection Design Goals 1

1.1.1 Strong, Fault-Agnostic Error Detection 2
1.1.2 Separable Checking . 2
1.1.3 Low-Latency, Concurrent Detection 2
1.1.4 Low Area and Energy Overheads 3

1.2 Current Separable Arithmetic Error Detection Approaches 3
1.2.1 Duplication, Partial Duplication, and Lazy Duplication . 3
1.2.2 Residue Checking . 4

1.3 A New Approach: Low-Cost Duplication 5
1.4 The Structure of this Dissertation . 6

2 Background Concepts 8
2.1 Faults and Errors in Computer Arithmetic 8

2.1.1 Fault Mechanisms . 8
2.1.1.1 Transient Faults . 9
2.1.1.2 Permanent Faults . 9
2.1.1.3 Design Faults . 10
2.1.1.4 Environmental Timing Faults 10
2.1.1.5 Fabrication Faults . 11

2.1.2 Error Models . 11
2.1.2.1 Bits and Bursts . 11
2.1.2.2 Arithmetic Weight . 12
2.1.2.3 Single Device Errors 12
2.1.2.4 Single Component Errors 12

iv

2.2 Background for Goal #1: Strong and Fault-Agnostic
Error Detection . 13
2.2.1 Ensuring that the Duplicate Checker is Fault-Agnostic . 14

2.3 Background for Goal #2: Separable Checking 14
2.3.1 A Taxonomy of Separable Error Detectors 15

2.3.1.1 Non-Systematic Checkers 16
2.3.1.2 Inseparable Checkers 16
2.3.1.3 Design Co-Dependent Checkers 17
2.3.1.4 Design-Reactive Checkers 17
2.3.1.5 Timing-Reactive Checkers 17
2.3.1.6 Fully Separable Checkers 17

2.4 Background for Goal #3: Low-Latency, Concurrent
Error Detection . 18

2.5 Background for Goal #4: Low Area and Energy Overheads 18
2.6 The Methodology of this Research . 19

2.6.1 Hardware Synthesis and Analysis 19
2.6.2 Encoding of Input Operands and End-to-End Protection 19
2.6.3 Arithmetic Error Correction . 20

3 Low-Cost Duplication for Fixed-Point Addition 21
3.1 The Carry-Save Number System and a Modified Checker 21

3.1.1 Carry-Save Addition . 22
3.1.2 The Carry-Save Equality Checker 22
3.1.3 Carry-Save Equality for One’s/Two’s Complement

Numbers . 23
3.2 Carry-Save Duplication . 24

3.2.1 Relationship to Existing Work 25
3.2.1.1 Lazy Error Detection 25
3.2.1.2 Residue Checking . 26

3.2.2 Carry-Save Duplication Evaluation 27
3.3 Carry-Free/Carry-Propagate Duplication:

a Timing-Reactive Variant of Carry-Save Duplication 31
3.3.1 Carry-Free/Carry-Propagate Evaluation 33

3.4 Discussion and Future Work . 38
3.4.1 Carry-Save Duplication Discussion 38

v

3.4.2 CP/CF Duplication Discussion and Future Work 38

4 Low-Cost Duplication for Fixed-Point Multiplication 40
4.1 Low-Cost Duplicate Multiplication Methodology 40

4.1.1 The Baseline Multipliers . 40
4.1.2 Strict and Lazy Duplication . 41
4.1.3 Residue Checking . 42

4.2 Carry-Save Low-Cost Duplication . 43
4.2.1 Carry-Save Karatsuba Duplication 44

4.3 Residue Number System Duplication . 47
4.4 Discussion and Future Work . 50

4.4.1 Further RNS Duplication Evaluation 50
4.4.2 Alternate Number Systems and Organizations 50
4.4.3 Signed Arithmetic and Multiply-Accumulate 51

5 Floating-Point Multiplication 52
5.1 A Brief Introduction to Floating-Point Multiplication 53
5.2 Prior Work in Floating-Point Error Detection 56
5.3 Approximate Duplication Based on Truncated Multiplication . . 57

5.3.1 An Imprecision Threshold Checker for Truncated
Significand Multiplication . 58

5.3.2 Using Truncated Significand Multiplication for
Approximate Duplication . 59

5.3.3 Separable Detection of Different Floating-Point
Rounding Modes . 63

5.3.4 Use of Other Approximation Schemes and Number
Systems . 63

5.4 Application-Level Error Injection and Sensitivity Study 64
5.4.1 Binary Instrumentation-Based Error Injector 65

5.4.1.1 Comparison to Prior Error Injectors 65
5.4.2 Error Injection Results . 66

5.5 Discussion and Future Work . 69
5.5.1 The Use of Carry-Save Duplication for Exponent

Checking . 69

vi

5.5.2 The Use of Lazy Carry-Save Duplication for
Significand Checking . 69

5.5.3 The Use of RNS Duplication for Significand Checking . . 69
5.5.4 Correctly Diagnosing Permanent Failures 70
5.5.5 Dynamically Tunable Coverage 70

6 Summary & Broader Applicability 72
6.0.6 Security Applications . 72
6.0.7 Stochastic or Timing-Speculative Computing 73

References 74

vii

list of tables

1.1 An overview of the low-cost duplication schemes in this dissertation. 7
3.1 Baseline adder properties. 29
3.2 The overheads of carry-save duplication and lazy error detection. . . 30
3.3 A summary of the separable adder error detectors with complete

single-component error coverage. 33
3.4 Baseline adders with varying delay budgets. 34
3.5 The area and energy allocation of the baseline adders. 34
3.6 The absolute cost of separable error detection for adders of

varying speeds. Strict, carry-save, and CP/CF duplication are shown. 35
3.7 The overheads of separable error detection relative to adders of

varying speeds. Strict, carry-save, and CP/CF duplication are shown. 36
3.8 The CP/CF parameters used in Table 3.6 and Table 3.7. 37
4.1 The baseline multipliers selected for this work. 41
4.2 The overheads of lazy and lazy carry-save duplication. Lazy

carry-save duplication avoids the need for carry-propagate
addition in the duplicate unit, increasing efficiency. 45

4.3 The overheads of lazy and carry-save Karatsuba duplication
(relative to a baseline Karatsuba multiplier). 47

4.4 The overheads of residue number system duplication
(relative to the compressor-based fully parallel multiplier). 49

5.1 An example of truncated multiplication. Two 3-bit significands
are multiplied. DecE and BinE denote the exact result (before
normalization or rounding), and DecA and BinA give the
approximate result from a truncated multiplier using the first
three bits of the partial product matrix. 58

viii

list of figures

1.1 Arithmetic error detection through duplication and residue
checking. The % component represents residue generation, and
the % arithmetic unit (AU) performs residue generation and
modular arithmetic. 4

1.2 A block diagram of low-cost duplication. An operation is
performed both with the main arithmetic unit and with a
low-cost duplicate unit. This low-cost unit converts the inputs
into an alternate number system, using redundant arithmetic
and application-specific number representations to increase the
speed and efficiency of the duplicate operation. Following the
completion of the operation, a modified checker tests the
equality of the main arithmetic result with the duplicate result in
its alternative format. 6

2.1 The separability classification of arithmetic error detecting codes
and the design of different error checkers. 15

2.2 A taxonomy of separability. Designs are arranged in order of
increasing separability going from the upper right to the bottom left. 16

3.1 An example depicting decimal and binary three-operand
addition. Carry-save arithmetic uses the intermediary sum and
carry results directly and can perform binary arithmetic within a
constant full-adder delay. 23

3.2 A depiction of the carry-save equality checker. Cancellation is
detected between the carry-save and positional inputs through a
bit-sliced, constant-delay structure. Any non-complementary
bits are detected through an OR reduction tree. 23

ix

3.3 The Dadda dot diagram [105] of the bits and carry dependencies
in the one’s and two’s complement checkers. Dots represent bits
of data, and directional arrows indicate a carry-dependence
between bits. Therefore, the top and bottom row of dots
respectively represent the sum and carry bits output from the full
adders in the carry-save equality checker. An 8-bit checker is
shown; no carry-dependence exists between digits due to the
carry-save representation. The carry-out of the final bit-slice
differs between the one’s complement and two’s complement
equality checker; it is accordingly highlighted in grey. 24

3.4 A 1-bit slice of the lazy adder checker [106] and of the carry-save
duplicate checker. 25

3.5 A block diagram of the carry-save residue checker. All carry
propagation during residue generation and modular addition is
avoided by using carry-save modular multi-operand adders
(CS-MOMAs); a carry-save equality checker is used at the output
to verify the congruence of the output with the result of modular
arithmetic. The % component represents carry-save residue
generation without a final carry-propagate modular adder. 28

3.6 Pareto-efficient 16-bit adder designs. The highlighted adder
minimizes the ED2 metric and is used as a baseline. A similar
selection procedure is used to choose the 32, 64, and 128-bit
baseline adders. 28

3.7 The area and power of traditional and modified residue checking,
normalized with respect to carry-save duplication (denoted

“long residue checking”). The carry-save duplicate checker is
marked by a rhombus. 29

3.8 Ripple-carry duplication and carry-save duplication for a 3-bit
ripple-carry adder. Cells labeled FA denote full adders, R denote
registers, XO denote XOR gates, and OR denote OR gates. While
both ripple-carry duplication and carry-save duplication use the
same number of logic cells, ripple-carry duplication uses fewer
pipeline registers due to some overlapped execution. For
simplicity, two-rail checking logic is not shown. 32

x

3.9 A block diagram of carry-propagate/carry-free duplication. A
partial adder duplicates the lw least-significant bits of addition,
cw of which are checked in the first pipeline stage (in parallel
with the main addition). In the following pipeline stage, the
(lw–cw) duplicated-but-unchecked bits are equality checked, and
the (N–cw) unduplicated bits are checked via carry-save
duplication. The carry-out of the strict duplicate adder (which is
passed through a register to the carry-in of the carry-save
duplicate checker) is not shown. 33

3.10 An alternate error detection scheme that employs a split two-rail
checker along with duplication. 39

4.1 The stages of strict and lazy duplication. “PP gen” denotes partial
product generation. Strict duplication uses a mirrored multiplier
for checking, whereas lazy duplication utilizes any extra
detection latency to reduce the complexity of the duplicate
multiplier. Simple timing diagrams are shown for a multiplier;
the relative time spent in each step of computation is not
accurate and is for visualization purposes. 41

4.2 Carry-propagate addition can be eliminated in the duplicate
multiplier by employing a carry-save equality checker. 44

4.3 Karatsuba multiplication can perform an N-bit fixed-point
multiplication using three N/2-bit multipliers. Carry-free
duplication uses a modified checker to eliminate the
carry-propagate addition of the sub-components. 46

4.4 A block diagram and visualization of RNS duplication. “RNS
Gen” represents residue generation. Partial product generation
and multi-operand addition are modified specific to each
modulus. Multiplication of an RNS-encoded number can
proceed more quickly than its fixed-point counterpart; this extra
slack can lead to overall cost savings. 48

5.1 Block diagram of approximate duplication. A reduced-precision
unit checks the results of computation (to within a known tolerance). 53

xi

5.2 A block diagram of floating-point multiplication. The exponents
of the inputs are summed, the significands multiplied, and the
significand of the result normalized and rounded to fit within the
footprint of the output number. Sign logic is shown in purple,
exponent addition logic is shown in green, significand
multiplication is shown in pink, and normalization and
rounding logic is shown in blue. 55

5.3 A depiction of the relative hardware cost of the components in a
floating-point multiplier and their impact on the final magnitude
of the result. 55

5.4 A block diagram of approximate duplication using a truncated
significand multiplier. The scheme is general enough to use any
form of approximation, so long as it always underestimates the
exact result and has a well-characterized maximum relative
imprecision. 60

5.5 The results of an application-level error injection campaign for
floating-point multiplication. Ten thousand undetected errors
are injected into each of six error detection schemes per program;
each error detection scheme is chosen to be representative of a
partial duplication or approximate duplication organization. The
results of every injected error are classified and tabulated based
on their effect on the program output. 67

5.6 A block diagram of flexible approximate duplication. The
maximum relative checking error is tunable and can be
determined at runtime. 70

xii

1 introduction *

Rising levels of integration and decreasing component reliabilities make error
protection increasingly important in computer systems. At the same time, the
crucial need for energy efficiency necessitates low-cost reliability techniques. The
error protection of arithmetic circuitry is typically more expensive than that of
memory or data movement; protection of arithmetic has correspondingly been
reserved for critical or high-availability applications. Current trends, however,
indicate that error protection of the arithmetic pipeline will be necessary in the
future for more diverse application areas.

This dissertation investigates a novel class of arithmetic error detection
schemes based on a general technique called low-cost duplication. These low-cost
duplicate units are able to provide substantive strength and efficiency advantages
over existing arithmetic error detection schemes. Section 1.1 describes the four
design goals that motivate low-cost duplication. Section 1.2 describes the general
error detection techniques that are currently in use; these techniques are unable
to satisfy all of the aforementioned design goals. Section 1.3 introduces low-cost
duplication; a set of error detection schemes based on low-cost duplication
are able to simultaneously satisfy all four design goals, providing complete and
efficient reliability for the arithmetic pipeline.

1.1 ARITHMETIC ERROR DETECTION DESIGN GOALS

A comprehensive and implementable arithmetic error detection scheme should
improve the reliability of the arithmetic pipeline without impacting the design or
efficiency of the arithmetic units themselves. Also, the arithmetic error detection
circuitry should have low hardware overheads and should readily interface with
higher level error recovery systems. More formally, these requirements lead to
four design goals for effective arithmetic error detection. This research describes
a set of error detection mechanisms that simultaneously satisfy all of these goals.

* Parts of this chapter appear in [1], with Earl E. Swartzlander, Jr. serving as supervisor.

1

1.1.1 Strong, Fault-Agnostic Error Detection

Error detection mechanisms often limit their coverage to restricted classes of
faults or errors, such as permanent gate oxide faults [2, 3, 4, 5] or those errors
that originate from one gate or cell [6, 7, 8, 9, 10]. There are numerous faults that
can affect the datapath of a system, some of which produce error patterns that
are not well captured by synthetic models. Due to the uncertainty of fault rates
and error manifestation in the arithmetic pipeline it is best for an error detection
mechanism to have high error coverage across faults and to not rely on a restric-
tive error model. A beneficial side effect of this strong error detection is that
it simplifies system-level reliability analysis. Without complete error coverage,
proper analysis of the system-level effect of undetected errors is complicated and
requires intimate knowledge of the expected workloads and arithmetic circuitry.

1.1.2 Separable Checking

An error detectionmechanism is separable if the checking procedure can operate
without any communication from the protected unit. Separability is critical for
efficient design development, as it allows error detection to proceed independent
of arithmetic. This independence enables the reuse of tested and optimized arith-
metic units and also facilitates the modification of arithmetic circuitry without
concern for its impact on reliability. Separability also enables the fine-grained
gating of error detection, allowing the use of alternate error detection mech-
anisms where appropriate and avoiding the checking overheads for naturally
resilient applications [11, 12, 13].

1.1.3 Low-Latency, Concurrent Detection

Arithmetic error detection mechanisms rely on higher-level recovery mecha-
nisms to halt error propagation and restore proper machine function. Low, fixed
latency error detection simplifies the design of this error reporting and handling
system. It also allows designers to keep all datapath error reporting synchronous,
which is important for efficient common-case error recovery at higher system
levels [13, 14, 15].

2

1.1.4 Low Area and Energy Overheads

Faults, by their nature, are typically infrequent and unpredictable. While the
expected fault rate for the arithmetic pipeline may be high enough to warrant
error detection circuitry, this circuitry should not needlessly waste chip area or
energy during error-free operation. The importance of efficient error detection
is exacerbated by the current trend towards energy-constrained operation.

1.2 CURRENT SEPARABLEARITHMETIC ERRORDETECTIONAPPROACHES

There are two broad techniques that find wide applicability to separable error de-
tection across different arithmetic operations: duplication and residue checking.
Duplication and residue checking each have advantages, but neither approach is
able to satisfy all of the aforementioned design goals.

1.2.1 Duplication, Partial Duplication, and Lazy Duplication

Coarse-grained spatial duplication, also known as dual modular redundancy
(DMR), is simple, intuitive, strong, separable, and general, and it may be applied
to any arithmetic operation (as shown in Figure 1.1a). The area and power costs
of duplication, however, are often prohibitive. Duplication has only been em-
ployed in specialized processors where reliability is of paramount importance,
surpassing the need for efficiency [16, 17, 18, 19, 20]; even IBM uses alternative
arithmetic error detection mechanisms in some of its notoriously reliable main-
frame computers for increased efficiency [21, 22, 23]. Also, full duplication can
also have incomplete coverage against certain faults. Timing violations, design
faults, and fabrication faults can possibly affect both the main arithmetic unit
and duplicate check unit, escaping error detection and possibly resulting in silent
data corruption or a system failure.

Partial duplication (Figure 1.1b) is an ad-hocmethod that only replicates some
sub-components to reduce the overheads of full duplication. Two prevailing
partial duplication strategies seem to exist: (1) focusing on those components
(such as control circuitry) where an error tends to have a massive effect on the
output [24], or (2) duplicating just enough circuitry to cover a narrow range of
errors, such as those that affect a single bit of the output [25]. Because partial

3

Main

Unit

Checker

A

B

Error?

Output

Check

Unit

(a) Duplication

Main

Unit

Checker

A

B

Error?

Output

Check

Unit

(b) Partial Duplication (c) Residue Checking

Figure 1.1: Arithmetic error detection through duplication and residue checking. The %
component represents residue generation, and the % arithmetic unit (AU) performs residue
generation and modular arithmetic.

duplication is applied in an ad-hoc manner, it can potentially have large and
unbounded coverage holes.

Lazy duplication decreases the cost of strict duplication by employing a
simplified duplicate checker with a long checking latency [26, 27]. While lazy
duplication retains the strength and separability of the DMR organization, it
suffers from a long detection latency and can potentially introduce hidden
data movement and synchronization costs in higher-level error reporting and
recovery mechanisms.

1.2.2 Residue Checking

Addition andmultiplication can be checked by testing the equality of Equation 1.1,
where |N |A=N modA and ⊕ denotes a modular operation [28]. If both sides
of Equation 1.1 are equal, it is likely that no error has occurred. If they are not
equal, then some error has occurred.

|a⊕b|A
?= ||a|A⊕ |b|A|A (1.1)

This scheme is called residue checking, and it is depicted by Figure 1.1c. In
order to simplify operations, residue checking often relies on a restricted class of
residues in the form A = [2a–1;a ∈N] [29]. The error coverage of a residue code
depends on the width, a, of its checking modulus. In general, large checking

4

moduli are prohibitively expensive. As a result, residue checking has lower error
coverage than duplication [12, 30].

1.3 A NEW APPROACH: LOW-COST DUPLICATION

Full duplication satisfiesmost of the design goals from Section 1.1, offering strong,
separable, low-latency error detection. However, its high area and energy over-
heads preclude full duplication from being a realistic error detection scheme for
most processors. Also, some faults (such as design bugs or environmental timing
faults) may lead to correlated errors in both the main and duplicate arithmetic
unit, lessening the fault-agnosticism of traditional DMR organizations [31, 32].
Residue checking offers the ability to lower the hardware and energy overheads
of arithmetic error protection, but it does so at the expense of high design-effort
or holes in error coverage. Partial duplication maintains the simplicity of dupli-
cation at lower costs but it has correspondingly low error coverage, meaning
that undetected errors can significantly corrupt program state.

This dissertation investigates novel organizations of dual modular redun-
dancy that provide compelling strength and efficiency advantages over simple
duplication. Specifically, this work is based off of the intuition that a low-cost du-
plicate checker may employ a non-standard number system with superior speed
and efficiency. Also, because the output of the duplicate unit is discarded after er-
ror detection, many of the costs traditionally associated with these non-standard
number systems (such as the data movement and storage costs of redundant
arithmetic or the imprecision accumulation of approximate arithmetic) have
little to no impact. Figure 1.2 shows a block diagram of the low-cost duplication
process.

Low-cost duplication differs from lazy duplication (as described above in Sec-
tion 1.2.1) in two respects. First, lazy duplicate checkers perform arithmetic in
the same number representation as the main arithmetic unit, and do not fit the
definition of a specialized low-cost duplicate unit considered in this disserta-
tion. Also, unlike lazy duplicate checking, low-cost duplication maintains the
low-latency error detection of strict duplication in order to simplify implemen-
tation, cheapen higher-level recovery, and avoid a dependence on aggressive
latency-tolerant microarchitectural features to lessen performance loss.

5

Figure 1.2: A block diagram of low-cost duplication. An operation is performed
both with the main arithmetic unit and with a low-cost duplicate unit. This
low-cost unit converts the inputs into an alternate number system, using redun-
dant arithmetic and application-specific number representations to increase the
speed and efficiency of the duplicate operation. Following the completion of the
operation, a modified checker tests the equality of the main arithmetic result
with the duplicate result in its alternative format.

Low-cost duplicate units can be thought of in two ways. First, low-cost
duplication can be considered as a more efficient replacement for DMR in
systems demanding high reliability and availability—in fact, its substantive cost
savings may even make low-cost duplication a viable approach in systems where
DMR is prohibitively costly. Alternatively, low-cost duplication can be thought of
as a more optimized baseline for the evaluation of specialized or best-effort error
detection mechanisms. Currently, the assumption is often made that concurrent,
strong, low-latency duplication requires >100% implementation overheads. This
dissertation suggests, however, that with careful design this may not always be
the case.

Table 1.1 gives an overview of the low-cost duplication organizations consid-
ered in this research. The schemes use operation-appropriate low-cost number
systems to check the results of fixed-point addition, fixed-point multiplication,
and floating-point multiplication.

1.4 THE STRUCTURE OF THIS DISSERTATION

The dissertation proceeds as follows. Chapter 2 reviews the basic concepts
related to arithmetic error detection and defines the scope of this research. Chap-

6

Table 1.1: An overview of the low-cost duplication schemes in this dissertation.

Arithmetic Operation Chapter Number System

Fixed-Point Addition 3 Carry-Save Arithmetic

Fixed-Point Multiplication 4
Carry-Save or Residue

Number System
Arithmetic

Floating-Point Multiplication 5 Truncated Fractional
Arithmetic

ter 3 develops a parameterized family of low-cost duplicate checkers for addi-
tion. Chapter 4 investigates an alternative form of low-cost duplication to protect
multiplication. Finally, Chapter 5 examines approximate duplication for the
low-cost, precision-proportional protection of floating-point multiplication and
Chapter 6 describes how low-cost duplication may have broader applicability to
other problem domains.

7

2 background concepts †

Before describing the main contribution of this dissertation, some error de-
tection concepts and terminology are reviewed. Section 2.1 introduces some
relevant terminology and describes the faults and errors that can affect arith-
metic. Sections 2.2–2.5 give further motivation and conceptual background for
the design goals (from Section 1.1) of strong, separable, low-latency, and low-cost
error detection. Section 2.6 describes the methodology and assumptions used
by this research.

2.1 FAULTS AND ERRORS IN COMPUTER ARITHMETIC

This research adopts the established terminology that a fault is a physical phe-
nomenon or defect that may cause an error or failure, an error is a discrepancy
between the intended and actual data in a system, and a failure is an instance in
time when a system displays a behavior that is contrary to its specification [31, 33].
The aim of this dissertation is to use strong and efficient error detection to pre-
vent arithmetic pipeline errors from developing into a system failure. Corre-
spondingly, an error indicates the corruption of data in an arithmetic unit or its
pipeline registers and a failure indicates that erroneous results are propagated to
subsequent instructions or to memory.

2.1.1 Fault Mechanisms

A plethora of faults can cause arithmetic errors; a brief description follows of
five of the most frequently studied fault mechanisms. These five faults differ in
the way that they tend to manifest and whether they persist—some faults tend
to be transient, others are active intermittently (only in certain conditions or for
some inputs), and others tend to permanently affect a system until the affected
component is removed. The rate of these faults is largely unknown in current
technologies and this uncertainty is exacerbated by the unpredictability of future
technology challenges and limitations [34, 35, 36, 37, 38].

† Parts of this chapter appear in [1], with Earl E. Swartzlander, Jr. serving as supervisor.

8

2.1.1.1 transient faults

Mechanism: Transient (or soft) faults are those that corrupt a single computa-
tion. Such faults are typically caused by a chain of events following the strike
of an energetic particle from the environment. The fundamental mechanism
behind a transient fault is as follows: (1) an energetic ion1 strikes the active
region of a transistor, freeing electron-hole pairs as it passes through the device;
(2) freed charge collects at the source and drain of the device, generating current;
(3) this generated current propagates through the transistor, regardless of its
state; (4) a fault occurs if the current passing through an off-state transistor
is sufficient to overcome its load capacitance and erroneously switch devices
connected to its output [41].
Properties and Error Activation: Transient faults are rare and unpredictable
and can occur any time during system operation. The manifestation of a tran-
sient fault is an erroneous current or voltage spike at the output of one or
more neighboring transistors [42, 43, 44]. A particle-induced spike may or
may not cause an error, and there are different effects that can prevent a tran-
sient fault in a pipeline register or logic from becoming microarchitecturally
visible [34, 41, 45, 46]. The rate and duration of transient faults is highly variable
and it depends on situational factors (altitude, latitude), environmental factors
(temperature, position in the solar cycle), supply voltage, and the specifics of
fabrication technology [47, 48, 49, 50, 51, 52, 53].

2.1.1.2 permanent faults

Mechanism: There are a variety of mechanisms that can cause a device to
becomepermanently faulty. Extrinsic gate oxide breakdown can occur during the
infancy of a weak chip [54, 55], and end-of-life faults may develop over time due
to electromigration [56], hot carrier degradation [57], or other time-dependent
breakdown mechanisms [36, 58].

1 Such an energetic ion can be produced by multiple events. Two likely candidates are alpha
particles that are produced directly by the decay of solder material and package impurities [39]
or secondary ionized particles that follow the nuclear spallation of an environmental neutron
passing through the processor substrate [40].

9

Properties and Error Activation: The manifestation of a permanent fault is
generally the same as an erroneous open or short-circuited wire. Once perma-
nent faults manifest, their effects tend to persist. Permanent faults generally
occur either during the infancy of a chip or after years of continuous operation,
leading to the so-called bathtub curve for fault rates over time [54].

2.1.1.3 design faults

Mechanism: Despite aggressive pre-silicon testing, design faults can make their
way into a computer system. Themost famous arithmetic design fault is probably
the Intel Pentium FDIV bug [59], where a lookup table flaw in floating-point
division caused an incorrect result for certain inputs. Because of the design flaw,
Intel was responsible for replacing faulty processors to astute customers at a
reported cost of $475 million USD (approximately $693.5 million USD in today’s
currency) [60, 61].
Properties and Error Activation: It is likely that any straightforward design
fault will be caught during testing. Therefore, uncaught design faults are likely to
manifest as errors intermittently for specific inputs. So long as these problematic
inputs persist, the design error will manifest. Unlike permanent or fabrication
faults, design bugs are completely intrinsic and affect every fabricated chip—in a
large system, every node is affected. Also, themanifistation of a design fault is not
confined to a single device or wire, and its effect on the output of a component
is not well characterized.

2.1.1.4 environmental timing faults

Mechanism: Environmental timing faults can result when insufficient timing
and voltage margins are provided for the operating conditions of a chip. This can
occur due to voltage droop [62, 63] age and temperature-related slowdown [37,
64, 65], and on-chip variability [32, 65]. As an example, floating-point design
errors have caused a recall of AMD Opteron chips due to a heat density issue
where demanding workloads cause timing faults [66].
Properties and Error Activation: Similar to design faults, environmental tim-
ing faults are typically intermittent and will persist so long as the operating
conditions or supply voltages are outside of the safe range. The manifestation of

10

a timing fault depends on the detailed timing information of a circuit; variability
in devices, the environment, and voltage add uncertanty to the characterization
of such faults [32, 63, 65].

2.1.1.5 fabrication faults

Mechanism: Deep sub-micron technologies suffer from some fabrication-
related fault mechanisms that can lead to manufacturing defects. For instance,
step coverage problems during the metalization process can lead to faulty open
circuits in a fabricated design [38]. Complete testing of fabrication faults is
expensive, and corresponding post-synthesis testing coverage targets of less than
100% fail to catch all faults [67].
Properties and Error Activation: Fabrication faults will typically manifest
as short-circuited or open-circuited bridging defects. Their effects will persist
throughout the lifetime of an affected chip.

2.1.2 Error Models

An arithmetic error occurs when a fault propagates through logic and pipeline
state to produce an incorrect result. The direct observation or simulation of faults
is difficult and time-consuming and it is highly design and technology-dependent.
As such, many error detection mechanisms employ synthetic error models for
analysis. Some of the most common and important error models are described
below.

2.1.2.1 bits and bursts

A common error model for memory is to consider a single erroneous bit or
a contiguous burst of bits in error. While some studies of application error
propagation attempt to use single-bit-flip errors for arithmetic [68, 69, 70], none
of the faults from Section 2.1.1 are constrained to produce single-bit errors.
Such studies may therefore underestimate the severity of arithmetic errors and
correspondingly overestimate the potential for weak error protection techniques
to mitigate system failures.

11

2.1.2.2 arithmetic weight

The severity of an arithmetic error is sometimes expressed in terms its arith-
metic weight. This can be thought of as the Hamming weight of the non-
adjacent normal form of the distance between the intended and corrupted output
value [71, 72]. While the concept of arithmetic weight is important to the theory
of arithmetic error detecting (and correcting) codes, it is not especially suited
for use as a synthetic error model as faults do not typically manifest in a way
that constrained to certain arithmetic weights.2

2.1.2.3 single device errors

A common error model is to assume a single faulty gate, cell, or node in the
arithmetic unit or checker. This model is referred to as a single device (SD)
error,3 and the erroneous output can propagate from the faulty node to affect
one or more connected devices in the component. The SD error model captures
the effects of most transient, permanent, or fabrication faults, as it is unlikely
that such faults affect many simultaneous devices.

2.1.2.4 single component errors

A more general approach than the SD error model is to assume an arbitrary
error in any single component. This model, the single component (SC) error
model, can capture multiple faults within the arithmetic unit or checker. An
example of such a severe fault is a powerful transient error that affects a burst of
pipeline latches [43, 73, 74] or neighboring logic cells [44, 75]. Design faults and
environmental timing violations can produce arbitrary errors in an arithmetic
unit, and as such they may be encompassed by the SC error model so long as it
is known that the fault will only affect a single system component. Section 2.2.1
describes how to ensure this property holds in the context of duplication, such

2 Careful arithmetic unit design can constrain the arithmetic weight of errors [10]. Certain
co-dependant checkers (as defined later in Section 2.3.1.3) can therefore use arithmetic weight as
an effective error model, but this is not true for more separable error detection schemes.

3 In the case of transient faults, this model is often referred to as a single event upset [41]. Confus-
ingly, due to its ability to affect an entire connected component, this error model is also called a
multiple error [22] or a single distributed fault [29].

12

that a duplicate checker can provide complete coverage against the SC error
model.

2.2 BACKGROUND FOR GOAL #1: STRONG AND FAULT-AGNOSTIC
ERROR DETECTION

The typical approach to arithmetic error detection is either to attempt a best-effort
mechanism with incomplete error coverage, such as residue checking [12, 28,
29, 30, 76, 77], or to try and select the most prevalent faults or errors and to
deal with them with specialized mechanisms. Examples of such specialized
mechanisms include detectors for transient faults [78, 79], gate oxide faults [2, 3, 4,
5], timing violations [80, 81], fabrication-related faults [82], and design faults [26].
Alternatively, an error detector can focus on a narrow error model, such as the
single-device errors [6, 7, 8, 9, 10]; depending on the protected circuit, such an
error model may capture the effects of some faults (such as single-event-transient
faults, gate oxide faults, and some fabrication-related faults) but may miss others
(single-event-multiple-transient faults, timing, violations, and design faults).

While specialized error detection mechanisms boast low area and energy
overheads, their use in a comprehensive arithmetic error detection scheme is
fraught with difficulty. Choosing the most prevalent fault mode can be costly
and difficult, especially given the uncertainty of future technologies, use-cases,
environmental conditions and design constraints. Also, whether and how a fault
manifests as an error is strongly design dependent. This design dependence
introduces additional development complexity—error detection mechanisms
that protect against a narrow error model must often dictate or react to the
arithmetic unit design to have high coverage, and there can be a tradeoff between
arithmetic unit optimization and error coverage [6, 10, 83, 84].

In lieu of using such detection mechanisms, this work proposes the use
of low-cost duplication for holistic, fault-agnostic arithmetic error detection.
The high error coverage of low-cost duplication avoids the need to tailor error
detection towards the most severe and prevalent errors, lessening the onus of
fault rate analysis, errormodeling, and system-level error propagation and failure
modeling on the chip designer.

13

2.2.1 Ensuring that the Duplicate Checker is Fault-Agnostic

Strict duplication achieves complete single component error coverage, which
can be considered a relatively strong level of protection. The SC error model,
however, is generally not applicable to correlated faults that can simultaneously
affect both the arithmetic unit and checker. In the case of strict duplication, such
potentially-correlated faults include design faults and environmental timing
violations, both of which can affect both the main and duplicate arithmetic unit.

There are well-known and well-established methods of ensuring that corre-
lated design and environmental timing faults do not simultaneously affect the
arithmetic unit and checker. Design faults can be correctly diagnosed by ensuring
design diversity between themain arithmetic unit and checker; this approach has
been recognized since the beginnings of mechanical computation [26, 31, 85, 86].
Timing violations can be correctly diagnosed by manipulating designs or supply
voltages to keep all checking circuitry well off of the circuit’s critical path [2].

Ensuring design diversity and keeping the duplicate checker off of the critical
path has an added cost for duplication. Since the most efficient main arithmetic
unit is normally employed, diversified duplication implies some inefficiency [86].
Also, keeping the duplicate checker off of the critical path requires some ad-
ditional checking latency. In contrast, low-cost duplication makes use of re-
dundancy and alternate number representations in the checker and is naturally
diversified by construction. Thorough these alternate number systems, low-cost
duplication can be more efficient than the main arithmetic unit despite this di-
versification. Also, by avoiding lengthy carry-propagation, low-cost duplication
is able to operate faster than the main arithmetic unit and can be non-critical
without additional checking latency.

2.3 BACKGROUND FOR GOAL #2: SEPARABLE CHECKING

Systematicity and separability are important classifying properties of error de-
tecting mechanisms. A mechanism is systematic if its data bits and check bits are
distinct and the data can be extracted from the codeword without first passing
through a decoder. A code is separable if checking can proceed without any com-
munication from the checked unit. By construction, all separable codes must be

14

Self-Testing

Unit

A

B

Output

Error?

(a) Non-Systematic

Main

Unit

Check

Unit

Checker

A

B
Output

Error?

(b) Inseparable

Main

Unit

Check

Unit

Checker

A

B
Output

Error?

(c) Separable

Figure 2.1: The separability classification of arithmetic error detecting codes and the design
of different error checkers.

systematic. A simple high-level illustration of non-systematic, systematic (but
inseparable) and separable checkers is shown in Figure 2.1.

It is highly desirable for an error detection scheme to be separable for several
reasons. First and foremost, separable checkers make for modular designs, as
shown by Figure 2.1c, and allow chip designers to implement arithmetic units and
checkers independently. This modularity lessens the design burden of reliable
execution. Also, separable designs can operate completely off of the critical
path (during error-free execution) and allow pre-existing and highly optimized
arithmetic units to be used without introducing new design constraints and
unwanted timing effects. For these reasons, this research focuses exclusively on
separable error detection mechanisms.

The full meaning of the term separability is not always clear from prior
research, and there exists a gradient in the degree of separability provided by error
detection mechanisms. To be clear and precise, this research uses a complete
taxonomy of separable error detection checkers that is presented below.

2.3.1 A Taxonomy of Separable Error Detectors

The definition of separability is normally limited to the physical communication
required by a checker, as described above. This leaves potential for separable
designs to require intimate knowledge of the main arithmetic unit, or even
to constrain the main unit design in order to satisfy an error model. Such
design interaction greatly reduces the modularity advantages of separability,
complicating the design of a reliable arithmetic pipeline. To eliminate this grey
area in classification and to be more explicit about the modularity of competing
designs, this research uses a more complete separability classification that is

15

Figure 2.2: A taxonomy of separability. Designs are arranged in order of increasing separa-
bility going from the upper right to the bottom left.

shown in Figure 2.2. This classification separates physically separable designs
into four classes that vary in their design modularity and independence. When
combined with non-systematic and inseparable checkers, the full classification
ends up with six classes; each of these classes is briefly described below.

2.3.1.1 non-systematic checkers

A non-systematic checker uses a single encoding for both the data and redundant
check information such that the data bits are not preserved. Such checkers either
demand the system-wide adoption of this specialized encoding or require that
the data be encoded and decoded before entering the protected arithmetic
pipeline. The most studied example of non-systematic checkers are the AN
codes, a non-systematic representation of residue coding [71, 72].

2.3.1.2 inseparable checkers

A systematic-but-inseparable checker separates the information and check bits,
but uses both as inputs to a single unit to generate an arithmetic result and error
indicator. An example of such a checker is optimized parity prediction, where
the parity prediction circuitry andmain arithmetic unit are carefully co-designed
to allow sharing of circuitry between the two without compromising the single
device error coverage of the error detection scheme [7, 8, 9].

16

2.3.1.3 design co-dependent checkers

If a separable checker relies on the main arithmetic unit to be designed or
synthesized in a certain fashion in order to provide coverage guarantees, it is
referred to as a design co-dependent separable checker. An example of a design
co-dependent separable checker is parity prediction where the main arithmetic
unit is synthesized in such a way that any SD error will result in a unidirectional
(and therefore detectable) error [6].

2.3.1.4 design-reactive checkers

Design-reactive separable checkers are designed in response to a specific arith-
metic unit. While such checkers do not dictate the arithmetic unit design itself,
they require intimate knowledge of the arithmetic unit in order to provide cov-
erage guarantees. Also, appropriate design-reactive separable checkers may
be unknown for some main arithmetic unit designs. An example of a design-
reactive separable checker is the auto-creation of residue checking circuitry to
provide complete SD error coverage for simple multipliers [10].

2.3.1.5 timing-reactive checkers

Timing-reactive separable checkers treat the main arithmetic unit is a black
box, and do not require intimate knowledge of the arithmetic unit design. Such
checkers, however, reactively utilize detailed timing information from the main
unit to overlap some computation with error detection and increase efficiency.
This research develops some timing-reactive error detection organizations, and
garners modest efficiency gains using detailed timing information from themain
unit [87].

2.3.1.6 fully separable checkers

Finally, fully separable checkers require no knowledge of the main arithmetic
unit apart from its output interface and the arithmetic operation it supports. No
checking is overlapped with computation. In addition to timing-reactive designs,
this research develops fully separable checkers. There is a tradeoff between the

17

timing-reactive and fully separable checkers, with full separability providing
superior design modularity at some associated cost.

2.4 BACKGROUND FOR GOAL #3: LOW-LATENCY, CONCURRENT
ERROR DETECTION

Low-latency, concurrent error detection simplifies the higher level replay and
state restoration mechanisms that are necessary for arithmetic error correction.
Long-latency error reporting can require higher level mechanisms to stall in
order to guarantee that errors do not propagate outside of a correctable region [15].
Alternatively, higher level mechanismsmay need to handle long-latency detected
errors with more expensive recovery mechanisms, such as transactional rewind
for data rematerialization or the use of a distant global checkpoint, impacting
system efficiency [13, 88].

2.5 BACKGROUND FOR GOAL #4: LOW AREA AND ENERGY OVERHEADS

Arithmetic errors tend to be rare, unpredictable events, and due to the complex-
ity of logic they can be difficult and costly to detect. Therefore, the high and fixed
overheads of conventional strong error detection are generally wasted during
fault-free operation. Meanwhile, general-purpose computers continue to be
applied to a more diverse range of applications, including those with high relia-
bility demands [89]. This motivates the development of low-cost error detection
techniques such as those considered in this dissertation.

Lower error detection overhead often comes at the expense of separability,
strength, or detection latency. Many existing mechanisms attempt to lower
the overheads of error detection by violating separability, by restricting error
coverage to a narrow set of fault or error models, or by asynchronously reporting
detected errors with a long and unpredictable latency. In contrast, the goal of this
research is to lower the area and energy costs of duplication without sacrificing
greatly in these areas—this dissertation shows that careful design can reduce
the overheads of duplication without losing its strength and implementation
benefits.

18

2.6 THE METHODOLOGY OF THIS RESEARCH

This research focuses on timing-reactive and fully separable checkers that can
provide complete detection of single-component errors. Such error detection
mechanisms are able to satisfy all of the design goals listed in Section 1.1.

2.6.1 Hardware Synthesis and Analysis

Unless otherwise noted, gate-level design space exploration is used to examine
the area and energy required for hardware components. The Synopsys toolchain
is used for synthesis, targeting the 40nm TSMC standard cell library [90, 91]. All
circuits are compiled using the Synopsys Design Compiler with high mapping
effort and optimization options consistent with an area-optimized implementa-
tion. Structural Verilog descriptions of each circuit are used throughout, with
compressor-based multipliers and minimum-depth parallel prefix adders. The
Synopsys Design Compiler provides area (in µm2) and power (in µW) estimates
for each design. Dynamic power is estimated at the gate level using random test
vectors.A TSMC wire model is used for timing estimates, and it is assumed that
each circuit is driven by, and drives, a pipeline register. Wherever energy esti-
mates are given, it is assumed that the protected arithmetic unit determines the
clock frequency of its parent chip; energy consumption is derived accordingly
using the timing and power estimates. Dual-rail encoded equality checkers are
used at the output of error detection to create totally self-checking designs.

2.6.2 Encoding of Input Operands and End-to-End Protection

This research focuses on arithmetic error detection in a generative context,
where operands arrive to the arithmetic unit in an unencoded format (or using a
non-arithmetic, systematic ECC code). An alternative organization is to protect
an operation in an end-to-end fashion, where local memory and data movement
are protected by the same error code as the operation [76, 92, 93, 94]. An
example of a cohesive end-to-end protection scheme is the STAR computer,
an experimental processor that uses residue checking to protect memory, data
movement, and arithmetic [76].

An end-to-end strategy is not considered in this study, as it pushes com-
plexity to the memory and data movement subsystems (the costs of which

19

often surpass that of arithmetic in control-intensive architectures). Also, op-
erations that do not preserve the error code suffer an increase in complexity
under end-to-end arithmetic error detection. This diffusion of implementa-
tion costs makes the evaluation of end-to-end schemes difficult without fixed
knowledge of the microarchitecture in which a protected arithmetic unit op-
erates. It is assumed that the low-cost duplicate checkers from this research
will be incorporated with other protection mechanisms for data storage and
movement to form an end-to-end protection scheme (similar to most existing
solutions [16, 17, 18, 19, 20, 21, 22, 23, 77]).

2.6.3 Arithmetic Error Correction

There has been a wealth of work that focuses on the correction of arithmetic
errors [71, 95, 96, 97, 98, 99]. Such efforts either violate separability [98, 99], add
costly hardware and correction latency [71, 96], or their correction capabilities
are limited to simple, synthetic errors [95].

Furthermore, unlike memory errors (where an uncorrected error can re-
sult in data loss) arithmetic errors can typically be corrected by replaying the
erroneous instruction.⁴ Such replay is especially effective for low-latency error
detectors, since microarchitectural replay mechanisms can handle an error be-
fore it is allowed to overwrite any of the input data [15]. For these reasons, this
research focuses solely on arithmetic error detection, leaving the role of error
correction to higher system levels.

4 In the case of a permanently faulty arithmetic unit, correction-through-replay may have to occur
on a different, fault-free arithmetic unit or using a different set of instructions. Higher-level
recovery mechanisms exist to deal with such situations [22].

20

3 low-cost duplication for
fixed-point addition ‡

Adders are fundamentally important to computer systems and their protection
against errors is correspondingly imperative in high availability and mission-
critical systems. Addition is utilized for different purposes including data ma-
nipulation, memory addressing, and control flow—this means that an error in
addition can manifest in many ways, ranging from silent data corruption to
catastrophic system failure. The wide range of maladies that can result from an
adder error potentially makes the strong protection of addition desirable across
many problem domains, including scientific computing and system software.

This chapter describes a low-cost duplicate organization for adders based
on the redundant carry-save number representation. Section 3.1 describes carry-
save addition and presents a modified equality checker with a carry-save in-
put. Section 3.2 describes and evaluates a fully-separable carry-save duplication
scheme for fast adders and Section 3.3 extends it to form a timing-reactive
separable checker for any speed of adder.⁵

3.1 THE CARRY-SAVE NUMBER SYSTEM AND A MODIFIED CHECKER

Addition using a non-redundant positional number system (such as two’s com-
plement) requires a lengthy carry propagation for addition; even the fastest
possible adders require a logarithmic number of stages to perform this carry
propagation [101, 102]. There are redundant number representations, however,
where addition can be performed with superior efficiency in constant time. The
following subsections describe constant-time addition using the carry-save num-
ber system⁶ [101, 102] and present a modified equality checker that evaluates the
equality of a positional number with a carry-save input.

‡ Parts of this chapter appear in [87, 100], with Earl E. Swartzlander, Jr. serving as supervisor.

5 Refer back to Section 2.3.1 for the distinction between a fully separable and a timing-reactive
checker.

6 Carry-save numbers are sometimes also referred to as stored-carry numbers [101].

21

3.1.1 Carry-Save Addition

Binary carry save addition performs arithmetic with the redundant digit set
d ∈ {0,1,2,3} [102]. Intuitively, carry-save addition saves the intermediary carry
signals during addition instead of adding them to more significant bit positions.
This results in the need for 2N bits to represent an N-bit dynamic range, but it
allows addition to proceed quickly and efficiently in a carry-free fashion. ⁷

Figure 3.1 illustrates carry-save addition through an example. Figure 3.1a
demonstrates the multi-operand addition of three decimal numbers. Each
positional column of digits is independently added, with the result being a sum
digit and one carry digit to be added to the next most significant position. Full
non-redundant multi-operand addition performs this carry propagation and
addition, adding the labeled intermediary result called the sum to the carry.
Carry-save addition keeps the number in this intermediary representation as
both a sum and a carry, meaning that conversion back to a non-redundant
form entails the addition of the two terms and 2N bits are required to represent
an N-bit result. It can be seen, however, that the carry-save addition of each
positional digit proceeds independently, leading to constant-time addition that
does not depend on the input operand width.

Figure 3.1b shows another illustrative example of carry-save arithmetic using
a binary representation, and Figure 3.1c gives its hardware implementation. It
can be seen that N-bit three-operand binary addition can be performed using N
full adders following a (constant) single full-adder delay.

3.1.2 The Carry-Save Equality Checker

Given a carry-save input represented by a sum and carry term, {S,C} and a
weighted positional fixed-point input,Z, the equality of S+C ?= Z can be evaluated
by detecting whether S+C–Z ?= 0 through cancellation. This cancellation can be
detected without carry-propagation by reducing the three-input addition S+C+
(-Z) down to a carry-save intermediary term {S′,C′} and detectingwhether S′ and
C′ complement each other. Such amodified equality checker with one carry-save
and one weighted input is shown in Figure 3.2. While this work (published

7 Carry-save addition is carry-free between digits. A limited amount of carry propagation is
needed to form each digit.

22

(a) Decimal Example (b) Binary Example (c) Binary CS Addition

Figure 3.1: An example depicting decimal and binary three-operand addition. Carry-save
arithmetic uses the intermediary sum and carry results directly and can perform binary
arithmetic within a constant full-adder delay.

(a) The carry-save equality checker (b) A checker bit slice

Figure 3.2: A depiction of the carry-save equality checker. Cancellation is detected between
the carry-save and positional inputs through a bit-sliced, constant-delay structure. Any
non-complementary bits are detected through an OR reduction tree.

in [100]) is the first to use this modified equality checker for arithmetic error
detection, a similar equality comparison has been employed elsewhere [102, 103,
104] for carry-save arithmetic.

3.1.3 Carry-Save Equality for One’s/Two’s Complement Numbers

The carry-save equality checker is easily adapted to work for either one’s or
two’s complement numbers. One’s complement arithmetic involves an end-
around-carry signal in the main adder. Correspondingly, the one’s complement
equality checker carries around the carry of the final bit-slice, as shown by the

23

(a) One’s Complement
Ci

Co

(b) Two’s Complement

Figure 3.3: The Dadda dot diagram [105] of the bits and carry dependencies
in the one’s and two’s complement checkers. Dots represent bits of data, and
directional arrows indicate a carry-dependence between bits. Therefore, the top
and bottom row of dots respectively represent the sum and carry bits output
from the full adders in the carry-save equality checker. An 8-bit checker is shown;
no carry-dependence exists between digits due to the carry-save representation.
The carry-out of the final bit-slice differs between the one’s complement and
two’s complement equality checker; it is accordingly highlighted in grey.

Dadda dot diagram [105] in Figure 3.3a. For two’s complement arithmetic, the
final check slice carry-out is checked against the complemented carry-out of the
main adder and the main adder carry-in is propagated into the first checking
stage, as depicted in Figure 3.3b. While two’s complement checking requires
an additional stage, the first and last check-slice can be significantly simplified
such that the complexity and power efficiency of the checker are only marginally
affected.

3.2 CARRY-SAVE DUPLICATION

Carry-save duplication makes use of the carry-save equality checker⁸ to verify
addition in constant time with low hardware overheads.⁹ Whereas full dupli-
cation checks for the equality of Z =Z′ (assuming Z is the result following the
addition of input operands A and B and Z′ is the result of the duplicate adder),
carry-save duplication tests for A+B =Z using the carry-save equality checker.
The input operands A and B assume the role of the sum and carry terms of the
carry-save input to the checker, and no redundant representation is propagated
outside of the modified equality check.

8 Carry-save duplication uses a two-rail encoded equality output (unlike the depiction from Fig-
ure 3.2a) in order to be a self-checking design.

9 Constituent work also calls the carry-save duplicate checker the long residue checker [100] for
reasons later explained in Section 3.2.1.2.

24

AB Sum

Cin

Cout

10

Error?

(a) Lazy Adder Checker

FA

A B CI

SCO

A B

Sum

CinCout

Error?

(b) Carry-Save Duplicate Checker

Figure 3.4: A 1-bit slice of the lazy adder checker [106] and of the carry-save
duplicate checker.

3.2.1 Relationship to Existing Work

Apart from its obvious relation to full duplication, carry-save duplication has
close ties to alternate adder error detection schemes including lazy error detec-
tion and residue checking. The nature of the relationship between carry-save
duplication and this existing work is investigated below.

3.2.1.1 lazy error detection

Figure 3.4a shows one bit-slice of the lazy error checker1⁰ proposed by Yilmaz
et al. [106]. Each slice checks one output bit using a modified full adder and
an XOR gate; the error signal from each bit is ORed together to determine if
an error has occurred. The checker has no carry dependence, such that the
checker delay (apart from the OR tree) does not directly depend on the word
width. Careful inspection shows that the functionality of the carry-save and lazy
checkers are essentially equivalent;11 each is a bit-sliced design, and the two have
similar error coverage. Figure 3.4(b) replicates a slice of the carry-save duplicate
checker for a side-to-side comparison.

10 Despite the name similarity, the lazy error checker is unrelated to lazy duplication (described
previously in Section 1.2.1).

11 The carry-save and lazy checker bit-slices have a different carry interface and therefore cannot
be mixed.

25

While the carry-save duplicate checker is functionally similar to the lazy
checker, the carry-save scheme has the potential to significantly reduce error
detection overheads using standard cell synthesis. An important advantage of
carry-save duplication is that it uses a full adder as a fundamental unit. There
exist efficient full-adder cells [107] in many standard cell libraries, increasing
the efficiency of carry-save duplication without resorting to custom cell design.

To demonstrate the efficiency advantages of the carry-save duplicate organiza-
tion, this research makes use of the mirror adder cell found in the Nangate 45nm
standard cell library [108].12 Isolated analysis13 of the checkers in Figure 3.4
shows that a carry-save duplicate bit-slice consumes 10.73% less area and 19.66%
less power than its lazy-checker counterpart. The following section evaluates
all separable adder protection approaches, and finds that the full carry-save
duplicate scheme has efficiency advantages equal to or greater than these initial
estimates.

3.2.1.2 residue checking

Residue checking (described briefly in Section 1.2.2) can be applied to addition.
In general, the strength of a residue check is proportional to its checkingmodulus
and its latency is inversely proportional to the modulus, such that the strongest
and lowest-latency organization is the residue check whose modulus is as large
as the input operand width. Such a strong and fast residue checker is equivalent
to full duplication.

The above observation relating residue checking to full duplication provides
an insight into the relationship between carry-save duplication and residue
checking. Carry-save duplication is equivalent to a limited-carry variant of
residue checking, described below, in the case of a maximal checking modulus.
Carry-Save Residue Checking:

An improved residue checker is presented that uses residue generation cir-
cuitry with carry-save outputs along with a carry-save equality checker. The

12 Unlike the overall experimental methodology described in Section 2.6, area and power estimates
in this section (Section 3.2) utilize the 45nm Nangate Open Cell Library [108]. This is done to be
consistent with published work [100]. Section 3.3 and the rest of this dissertation uses the TSMC
40nm library and is consistent with the previously described methodology from Section 2.6.

13 This isolated analysis characterizes and analyzes a single checker bit-slice in the context of its
application as an error detection for addition.

26

checker relies on a restricted class of residues in the form A = [2a –1;a ∈N], for
which |X|A (X being an N-bit fixed-point number) can be generated with an
N/a-input, a-bit multi-operand modular adder (MOMA) followed by an a-bit
end-around-carry adder [109]. A traditional residue checker performs this
full residue generation on each input, adds the two resulting residues using an
end-around-carry adder, and compares the result for equality with a residue
generated at the output of the main adder [12, 92]. The modified residue checker
eliminates the end-around-carry adder from the output of each residue generator,
instead keeping the output from each carry-save multi-operand-modular-adder
(CS-MOMA) in its redundant format. This modification eliminates four carry-
propagations from the checking procedure—two for the input residue generators,
one for themodular check adder, and one for the output residue generator—while
replacing the modular check adder with a 4-input CS-MOMA and replacing the
equality checker with a carry-save equality checker.1⁴

Due to the fact that the carry-save residue checking algorithm has no carry
dependence, its efficiency does not strongly depend on the checking modu-
lus. This makes the modified residue checker more efficient than traditional
residue checking, especially for larger (and stronger) checking moduli. Further
simplifications are possible when the checking modulus is equal to the input
size, in which case the scheme becomes completely equivalent to carry-save
duplication. Later, in Section 3.2.2, it is shown that the efficiency gained by
eliminating residue generation outweighs any added checking costs, making
carry-save duplication the most efficient modified residue checking organization
and eliminating traditional residue checking as a viable contender.

3.2.2 Carry-Save Duplication Evaluation

The overheads of carry-save duplication and other competing error detectors
are evaluated relative to an efficient two’s complement adder design. This effi-
cient baseline is chosen through a search of the design space to minimize the
ED2 metric [110]. Figure 3.6 shows a simplified Pareto frontier of the possible
16-bit adder designs, highlighting the reference adder used in this dissertation.

14 This carry-save equality checker is similar to the one described in Section 3.1.2 except that it
accepts two carry-save numbers as inputs. This replaces the full-adder in the bit-sliced checker
with a (4:2) compressor, slightly increasing hardware costs.

27

Figure 3.5: A block diagram of the carry-save residue checker. All carry prop-
agation during residue generation and modular addition is avoided by using
carry-save modular multi-operand adders (CS-MOMAs); a carry-save equality
checker is used at the output to verify the congruence of the output with the
result of modular arithmetic. The % component represents carry-save residue
generation without a final carry-propagate modular adder.

Delay, ns

E
ne

rg
y,

 p
J/

op

0.40

0.45

0.50

0.55

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●●●
●

●

●

●

●
●

●

●

0.4 0.5 0.6 0.7 0.8 0.9

Figure 3.6: Pareto-efficient 16-bit adder designs. The highlighted adder mini-
mizes the ED2 metric and is used as a baseline. A similar selection procedure is
used to choose the 32, 64, and 128-bit baseline adders.

Table 3.1 gives the area, power, and delay of each selected design. Some results
are normalized relative to the baseline adder or the carry-save duplicate checker;
absolute area and power consumption estimates can be derived accordingly.

Figure 3.7 shows the area and power consumption of traditional and mod-
ified residue checking for a 32-bit adder across different residue widths. The

28

Table 3.1: Baseline adder properties.

Adder Width Delay (ns) Area (µm2) Energy (pJ)

16 0.42 381.35 0.479
32 0.55 848.79 1.108
64 0.67 1546.06 1.898
128 0.7 3247.85 4.028

Residue Width (bits)

N
or

m
al

iz
ed

 w
.r.

t.
Lo

ng
 R

es
id

ue
 C

he
ck

in
g

1.0

1.2

1.4

1.6

1.8

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

● ●
●

●

●

●

2 4 8 16 32

Metric
●● Area
●● Power

Design
Optimized
Traditional

Figure 3.7: The area and power of traditional and modified residue checking, nor-
malized with respect to carry-save duplication (denoted “long residue checking”).
The carry-save duplicate checker is marked by a rhombus.

carry-save duplicate organization (denoted “long residue checking”) is marked
by a rhombus. The CS-MOMA for modified residue checking is implemented
using a tree of carry-save adders with an end-around-carry at each level. Any
such CS-MOMA requires a constant number of full adders regardless of its
modulus width; wiring complexity increases drastically at low residue widths,
however, making the carry-save duplicate configuration (a = 32) more area and
power efficient than any alternative. Increasing CS-MOMA depths conspire to
make residue checking at short residue widths (a� 32) a relatively long-latency
operation. As such, all designs in Figure 3.7 use a fixed detection latency of three
cycles, despite the fact that carry-save duplication easily completes earlier.

From Figure 3.7 it is apparent that that: (1) the limited-carry version is
more efficient than unmodified residue checking across all checking moduli; (2)
carry-save duplication is the design point with the lowest cost for this modified

29

Table 3.2: The overheads of carry-save duplication and lazy error detection.

Carry-Save Duplication

Width Area [µm2] (+%) Energy [pJ] (+%)
16 0144.9 (+38) 0.33 (+69)
32 0280.1 (+33) 0.78 (+70)
64 0556.6 (+36) 1.59 (+84)
128 1104.3 (+34) 3.46 (+86)

Lazy Checker

Width Area [µm2] (+%) Energy [pJ] (+%)
16 0197.1 (+48.3) 0.49 (+102.1)
32 0305.3 (+64.0) 0.96 (+86.8)
64 0612.2 (+60.4) 1.96 (+103.3)
128 1214.7 (+62.6) 4.33 (+107.5)

checker, despite the fact that it also has the highest coverage and lowest checking
latency. These two observations demonstrate the clear superiority of carry-free
duplication over residue checking for generative error detection of fixed-point
addition. These results are robust across all tested input widths, though only the
32-bit results are shown.

Table 3.2 gives the area and energy needed for carry-save duplication and the
lazy error checker relative to the baseline adders. The relative energy overheads
of carry-save duplication are higher than its area costs; this trend is consistent
with prior work [106]. Due to the continual utilization of the simulated adder,
dynamic power dominates.

Carry-save duplication has significant efficiency gains relative to the lazy
error detector while requiring less checking latency. The lazy checker consumes
about 10% more area and 25% more energy than does carry-save duplication.
The energy advantages of the carry-save duplicate organization slightly outweigh
the savings of a single bit-slice (see Section 3.2.1.1) due to reduced switching
activity at its error checking tree. The longer latency of lazy checking causes a
significant loss in its relative efficiency at 16-bits—in order to satisfy timing, the
lazy checker must increase the strength and power consumption of its cells.

30

3.3 CARRY-FREE/CARRY-PROPAGATE DUPLICATION:
A TIMING-REACTIVE VARIANT OF CARRY-SAVE DUPLICATION

Awide and diverse assortment of fixed-point adder designs exist that vary in their
speed, area, and power dissipation [111]. Carry-save duplication provides strong,
fully separable, low-cost error detection for fast, minimum-depth fixed-point
addition. However, carry-save duplication defers all checking until after the
results of the main addition, and there are main adder organizations—such as a
slow, pipelined adder—where the pipelining costs of this deferred evaluationmay
outweigh the costs of strict duplication. This section presents a flexible family of
separable error detection techniques called carry-propagate/carry-free (CP/CF)
duplication that provide superior error detection efficiency across a wider variety
of adders. Carry-propagate/carry-free duplication reactively utilizes detailed
timing information from themain adder to check result bits as they are produced,
and therefore it is considered a timing-reactive checker.

As amotivating example, it is noted that the careful application of duplication
may be less costly than carry-save duplication when protecting a pipelined
ripple-carry adder. This is because both ripple-carry duplication and carry-save
duplication use the same number of logic cells, but ripple-carry duplication can
overlap some checking with computation as the least-significant result bits are
produced first. This overlapped execution can reduce the number of pipeline
registers that are required for error detection precipitously. Figure 3.8 illustrates
these savings through the example of a 3-bit ripple-carry main adder (two-rail
checking logic is not shown).

Based on the above observations, this chapter investigates a parameterized
family of error detectors that combines the advantages of the carry-save du-
plication with those of strict duplication. The family is characterized by three
parameters: N (the input width), lw (the logic width of strict duplication), and cw
(the checking width of strict duplication). Functionally, the lw least-significant
bits of addition are computed using partial duplication, with cw of these bits
being fully checked before the main addition completes. In the pipeline stage
following the main addition, the remaining (lw–cw) duplicated-but-unchecked
result bits are equality checked, and the (N–cw) unduplicated bits are checked
via carry-save duplication. This scheme is referred to as carry-propagate/carry-
free (CP/CF) duplication owing to the fact that a carry-propagate adder is used

31

(a) Ripple-Carry Duplication (b) Carry-Save Duplication

Figure 3.8: Ripple-carry duplication and carry-save duplication for a 3-bit ripple-carry
adder. Cells labeled FA denote full adders, R denote registers, XO denote XOR gates, and
OR denote OR gates. While both ripple-carry duplication and carry-save duplication use
the same number of logic cells, ripple-carry duplication uses fewer pipeline registers due to
some overlapped execution. For simplicity, two-rail checking logic is not shown.

to check the least significant bits of the result while the carry-free carry-save
equality checker is used to check the most-significant bits.

Figure 3.9 shows a block diagram of CP/CF duplication. It should be noted
that the parameters of CP/CF duplication must be chosen in a reactive man-
ner in order to stay off of the critical path and maintain separability. Because
of this timing-reactive separability, carry-propagate/carry-free duplication de-
generates to carry-save duplication for protecting a fast adder with perfectly
balanced outputs but can operate as ripple-carry duplication for protecting a
very slow adder. Figure 3.8 can be used to demonstrate this—Figure 3.8a can
be thought of as CP/CF duplication with (lw=3, cw=2) and Figure 3.8b as a
design with (lw=0, cw=0). Table 3.3 qualitatively summarizes the properties of
carry-propagate/carry-free duplication relative to other separable error detec-
tors. Strict and lazy duplication require few registers to pass duplicated data,
but their logic overheads can be costly when protecting a fast adder. Carry-save
duplication greatly reduces this logic overhead, especially when protecting fast
adders, but it requires a constant number of extra registers to buffer the inputs.
Carry-propagate/carry-free duplication combines the best features of lazy and

32

Figure 3.9: A block diagram of carry-propagate/carry-free duplication. A partial
adder duplicates the lw least-significant bits of addition, cw of which are checked
in the first pipeline stage (in parallel with the main addition). In the following
pipeline stage, the (lw–cw) duplicated-but-unchecked bits are equality checked,
and the (N–cw) unduplicated bits are checked via carry-save duplication. The
carry-out of the strict duplicate adder (which is passed through a register to the
carry-in of the carry-save duplicate checker) is not shown.

Table 3.3: A summary of the separable adder error detectors with complete
single-component error coverage.

Scheme FAs, XOs, ORs Registers Checking Latency

Strict or Lazy
Duplication {>N , N , N} Few Short

Carry-Save
Duplication N Many Short

CP/CF
Duplication N Few Short

carry-save duplication. Designers can tailor the behavior of CP/CF duplication
to match the delay of an adder, achieving low-cost separable error detection
regardless of the speed and design of the protected circuit.

3.3.1 Carry-Free/Carry-Propagate Evaluation

The efficiency and flexibility of CP/CF duplication is demonstrated by protecting
a range of adders with different speeds. Following themixed serial/parallel prefix
methodology used for flexible parallel prefix addition [111], five different 32-bit

33

Table 3.4: Baseline adders with varying delay budgets.

Design Delay (ns) Area (µm2) Energy (pJ/op)

BK-32 0.29 1008 0.64
{BK-24, RC-8} 0.45 842 0.59
{BK-16, RC-16} 0.75 792 0.58
{BK-8, RC-24} 1.01 737 0.56

RC-32 1.21 719 0.56

Table 3.5: The area and energy allocation of the baseline adders.

Design Area (%) Energy (%)
Registers Logic Registers Logic

BK-32 39 61 65 35
{BK-24, RC-8} 47 53 71 29
{BK-16, RC-16} 50 50 73 27
{BK-8, RC-24} 54 46 75 25

RC-32 55 45 75 25

baseline adders are considered. The adders use slow, ripple-carry (RC) propaga-
tion for the least-significant bits of addition and Brent-Kung (BK) parallel prefix
addition [112] for all remaining bits. Table 3.4 gives the delay of each selected
baseline, along with its area and energy demands. It can be seen that adder costs
go down with decreasing speeds, such that an error detection mechanism must
change proportionally in order to be competitive across all time scales. Table 3.5
gives the relative cost of pipeline registers and logic for each baseline design. It
is apparent that the relative cost of pipeline registers is inversely proportional to
the speed of addition, which indicates that a pipelining-cognizant approach is
needed at slow speeds.

Table 3.6 shows the area and energy required for strict DMR (with the checker
in the pipeline stage following addition), carry-save duplication (with the checker
in the following pipeline stage1⁵), and carry-propagate/carry-free duplication
(as shown in Figure 3.9). The area and energy cost of registers, logic, and the
total cost (including both registers and logic) are shown. The design with the
lowest total cost is highlighted in bold. In addition to the absolute hardware

15 Prior work describes carry-save duplication for an unpipelined adder [100]. As such, this
pipelining scheme is based upon that used by the lazy adder checker [106].

34

Table 3.6: The absolute cost of separable error detection for adders of varying
speeds. Strict, carry-save, and CP/CF duplication are shown.

Duplication

Design Area (µm2) Energy (pJ/op)
Reg. Log. Tot. Reg. Log. Tot.

BK-32 134 749 883 0.174 0.318 0.492
{BK-24, RC-8} 134 584 718 0.176 0.264 0.440
{BK-16, RC-16} 134 534 668 0.177 0.249 0.426
{BK-8, RC-24} 134 479 613 0.178 0.233 0.410

RC-32 134 461 594 0.180 0.231 0.411

Carry-Save Duplication

Design Area (µm2) Energy (pJ/op)
Reg. Log. Tot. Reg. Log. Tot.

BK-32 264 254 518 0.263 0.207 0.471
{BK-24, RC-8} 264 254 518 0.262 0.208 0.470
{BK-16, RC-16} 264 254 518 0.262 0.208 0.470
{BK-8, RC-24} 264 254 518 0.263 0.208 0.471

RC-32 264 254 518 0.262 0.208 0.470

Carry-Propagate/Carry-Free Duplication

Design Area (µm2) Energy (pJ/op)
Reg. Log. Tot. Reg. Log. Tot.

BK-32 247 260 508 0.246 0.160 0.407
{BK-24, RC-8} 213 269 482 0.206 0.150 0.356
{BK-16, RC-16} 138 302 440 0.136 0.130 0.266
{BK-8, RC-24} 113 281 394 0.110 0.116 0.226

RC-32 49 323 372 0.041 0.097 0.138

costs of separable error detection for addition, Table 3.7 shows the area and
energy overheads required relative to the cost of each baseline adder. These data
represent the percent area and energy costs required to protect each baseline
design from error.

Strict duplication uses a constant number of registers, such that its register
costs remain invariant across designs. Meanwhile, the absolute logic costs of full
duplication scale with the speed (and cost) of the checked adder. As expected,
duplication requires >100% overhead for logic, because a duplicate main adder
and a two-rail checker are used to detect an error. The two duplicate adders share
the input registers, and duplication naturally compresses the amount of state that

35

Table 3.7: The overheads of separable error detection relative to adders of varying
speeds. Strict, carry-save, and CP/CF duplication are shown.

Duplication

Design Area (%) Energy (%)
Reg. Log. Tot. Reg. Log. Tot.

BK-32 13.3 74.4 87.7 27.1 49.6 76.7
{BK-24, RC-8} 15.9 69.3 85.2 29.7 44.6 74.3
{BK-16, RC-16} 16.9 67.4 84.3 30.8 43.2 74.0
{BK-8, RC-24} 18.2 65.0 83.1 31.7 41.5 73.2

RC-32 18.6 64.1 82.7 32.0 40.9 73.0

Carry-Save Duplication

Design Area (%) Energy (%)
Reg. Log. Tot. Reg. Log. Tot.

BK-32 26.2 25.2 51.4 41.0 32.4 73.4
{BK-24, RC-8} 31.3 30.2 61.5 44.4 35.2 79.5
{BK-16, RC-16} 33.3 32.1 65.4 45.5 36.0 81.5
{BK-8, RC-24} 35.8 34.5 70.2 46.9 37.1 84.1

RC-32 36.7 35.3 72.0 46.5 36.9 83.4

Carry-Propagate/Carry-Free Duplication

Design Area (%) Energy (%)
Reg. Log. Tot. Reg. Log. Tot.

BK-32 24.6 25.8 50.4 38.4 25.0 63.4
{BK-24, RC-8} 25.4 31.9 57.3 34.9 25.4 60.2
{BK-16, RC-16} 17.4 38.1 55.5 23.6 22.5 46.1
{BK-8, RC-24} 15.4 38.1 53.5 19.6 20.7 40.2

RC-32 6.82 44.9 51.7 7.31 17.2 24.5

needs to be propagated to the checker. These two factors conspire to give duplica-
tion modest register costs, resulting in∼82–88% area and∼73–77% total energy
overheads. Duplication is slightly more efficient for slower adders, because the
relative cost of data movement dominates at slow speeds (see Table 3.5).

Because of its structure and efficient implementation, carry-save duplication
uses significantly less logic area than duplication across all adder designs. How-
ever, due to the need to pass both inputs (and the carry-in bit) to the checker, the
register overhead of carry-save duplication is roughly double that of full duplica-
tion. The low logic and substantial register costs of the carry-save organization
add up to a∼51–72% total area overhead. The relative cost of pipeline registers in-

36

Table 3.8: The CP/CF parameters used in Table 3.6 and Table 3.7.

Design CP/CF Parameters
Logic Width (lw) Check Width (cw)

BK-32 4 2
{BK-24, RC-8} 8 7
{BK-16, RC-16} 18 16
{BK-8, RC-24} 21 19

RC-32 29 28

creases with the delay budget, making carry-save duplication less energy efficient
than duplication at protecting slow adders. Note that carry-save duplication
requires <100% area overheads to protect ripple-carry addition, despite the fact
that an carry-save equality checker bit-slice contains a full-adder cell. This is
because a DesignWare ripple-carry adder [113] was used as the baseline, which
(at the delay budget used) alternates full-adder cells with more expensive logic
in order to increase speed. Carry-save duplication requires a constant number
of registers and check slices, such that the absolute cost of the carry-save checker
never changes. Due to the scaling behavior of the baseline adders, carry-save
duplication is relatively more efficient at protecting faster designs.

Carry-propagate/carry-free duplication overlaps some checking with execu-
tion, significantly decreasing the amount of pipelined state (and therefore register
costs) relative to carry-save duplication. Meanwhile, the second-stage carry-free
checker decreases the logic costs relative to duplication. When the costs of both
logic and data movement are taken into account, CP/CF duplication achieves
superior area and energy efficiency across all designs and time budgets. Carry-
propagate/carry-free duplication offers a∼2–28% decrease in total checking area
and a∼14–66% reduction in total checking energy consumption relative to the
next most efficient separable mechanism. Table 3.8 shows the logic depth and
checking depth parameters chosen for the carry-propagate/carry-free checkers
used in Table 3.6 and Table 3.7. These parameters were determined through an
automated computer search; due to the simplicity and parameterization of the
error detection scheme, the time required for this search is not prohibitive.

37

3.4 DISCUSSION AND FUTURE WORK

Some discussion of experimental caveats and future research opportunities
related to carry-save and CP/CF duplication follow.

3.4.1 Carry-Save Duplication Discussion

Themajority of efficiency gains from carry-save duplication come from its ability
to leverage an efficient carry-free checker while using efficient standard library
cells. Custom cell designmay be used to improve the efficiency of the lazy checker,
likely making it roughly as efficient as carry-save duplication. One of the main
strengths of carry-save duplication is that it is able to avoid the complexity and
cost of custom cell design while providing superior implementation efficiency.

Careful inspection shows that the relative overheads presented for carry-
save duplication (Table 3.2) are higher than those claimed in prior work
for lazy checking [106], despite the fact that this dissertation finds carry-
save duplication to be more efficient. It is likely that this difference is
mainly due to differences in the baseline adders. However, some method-
ological decisions could also have an impact. All error detectors in this
dissertation employ a dual-rail encoded checker (unlike the prior work).
This is consistent with totally self-testing circuit implementations and is in-
tended to correctly diagnose permanent checker errors. Experiments indi-
cate that employing a single-rail checker (or a checker with a testable in-
put) would reduce the area and power of carry-save duplication by ∼8% and
∼13–15%, respectively.

3.4.2 CP/CF Duplication Discussion and Future Work

Carry-propagate/carry-free duplication relies on the least-significant sum bits
to be produced first in order to overlap some duplication and checking with the
main addition. This early production of the lower result bits is consistent with
2’s complement addition. However, there are some designs (such as end-around-
carry adders used for 1’s complement addition [114]) that produce perfectly
balanced outputs. For these designs, CP/CF duplication will degenerate to
carry-save duplication.

38

Figure 3.10: An alternate error detection scheme that employs a split two-rail
checker along with duplication.

For simplicity, this dissertation assumes that the CP/CF carry-propagate
(duplicate) adder is implemented using a ripple-carry adder. While preliminary
results indicate that this duplicate adder is sufficient for many designs, using
a more general form of carry-propagate duplication (such as one based on
flexible parallel-prefix addition [111]) could give modest efficiency increases,
especially for main adders with arbitrarily unbalanced outputs. Analysis of
CP/CF duplication with a more flexible and aggressive duplicate adder is left for
future work.

Some of the benefits of CP/CF duplication are due to its split two-rail checker,
which opportunistically checks the least-significant bits of the duplicate result in
parallel with the main addition. This split checking can sometimes decrease the
amount of registered state that needs to be propagated to the next pipeline stage.
In addition to its use for CP/CF duplication, such a split checker scheme could
also be employed with full duplication, as shown in Figure 3.10. Such a design
offers superior register costs relative to strict duplication, but does not reduce
the significant costs of fully duplicated logic (as does CP/CF duplication). Initial
experiments indicate that duplication with split checking operates as expected,
providing a modest improvement over full duplication but failing to achieve the
superior efficiency of CP/CF duplication. A full analysis of duplication with a
split checker is left for future work.

39

4 low-cost duplication for
fixed-point multiplication §

This chapter investigates the costs and benefits of low-cost duplication for the
strong, holistic error detection of fixed-point multiplication. Two low-cost
duplicate schemes are described and evaluated; it is shown that specialized
carry-save or residue number system checking can be used to increase the
efficiency of duplicated multiplication.

This chapter is structured as follows. Section 4.1 presents the baseline multi-
pliers and the baseline duplicate designs considered in this work and Section 4.2
investigates the design and overheads of using specialized carry-save checkers
in low-cost duplicate multipliers. It is shown that carry-save duplication lowers
the costs of duplication in a straightforward manner without sacrificing error
coverage, checking latency, or separability. Section 4.3 investigates an alternate
low-cost duplicate multiplier that uses the residue number system to good effect.

4.1 LOW-COST DUPLICATE MULTIPLICATION METHODOLOGY

Throughout this chapter, the description and evaluation of each low-cost dupli-
cate multiplier is interleaved. For this reason, the chosen baseline multipliers
and prior approaches are described up front. Apart from these chosen base-
lines and prior approaches, the prevailing experimental methodology described
in Section 2.6 applies; it is not reproduced here in the interest of brevity.

4.1.1 The Baseline Multipliers

Three efficient unsigned binary multipliers are selected to serve as the main
arithmetic unit baselines at 16, 32, and 64 bits. The Pareto-optimal (over area
and time) post-synthesis designwhichminimizes theAT metric is chosen at each
word length through a search of the design space. Table 4.1 gives the properties
of the selected baselines.

§ Parts of this chapter appear in [1], with Earl E. Swartzlander, Jr. serving as supervisor.

40

Table 4.1: The baseline multipliers selected for this work.

Width (N) Critical Latency
[ns]

AT-Efficient
Latency [ns]

AT-Efficient
Area [µm2]

16 1.21 1.25 03547.8
32 1.70 1.73 12937.9
64 2.30 2.34 38179.8

Carry-Prop.
Addition

PP
Gen

PP
Gen

Multi-Operand
Addition

Multi-Operand
Addition

Carry-Prop.
Addition

Equality
Checker

(a) Strict Duplication Visualization

Carry-Prop.
Addition

PP
Gen

PP
Gen

Multi-Operand
Addition

Multi-Operand
Addition

Equality
Checker

Carry-Prop.
Addition

(b) Lazy Duplication Visualization

Figure 4.1: The stages of strict and lazy duplication. “PP gen” denotes partial product gener-
ation. Strict duplication uses a mirrored multiplier for checking, whereas lazy duplication
utilizes any extra detection latency to reduce the complexity of the duplicate multiplier.
Simple timing diagrams are shown for a multiplier; the relative time spent in each step of
computation is not accurate and is for visualization purposes.

4.1.2 Strict and Lazy Duplication

Two baseline DMR organizations are considered: strict duplication, which uses
a mirrored multiplier for checking, and lazy duplication, which uses any ex-
tra detection latency to reduce the cost of the duplicate multiplier. Figure 4.1
shows both strict and lazy duplication. A typical parallel fixed-point multiplier
goes through three steps of computation: partial product generation, the multi-
operand addition of the partial products, and the carry-propagate addition of
the redundant carry-save product. The steps of a multiplier are shown over
time along with the steps of a duplicated checker. Strict duplication proceeds in
lockstep with the main multiplier; lazy duplication utilizes the extra checking
latency for modest cost savings.

Strict duplication requires a 30–20% detection latency and 102.8%, 102.3%,
and 101.2% area overheads to protect the 16, 32, and 64-bit multipliers, respec-
tively. This reduction in relative overheads with increasing word length is due
to the quadratic scaling behavior of parallel multipliers—the dual-rail equal-

41

ity checker scales linearly, such that its contribution to the total area becomes
smaller.

The >100% implementation overheads of strict duplication are consistent
with many prior assumptions about DMR organizations, but the overheads of
duplication can be easily decreased by allowing extra detection latency. Later,
Table 4.2 gives the estimated overheads for lazy duplication. Lazy duplication
considerably lowers the overheads of strong error detection by utilizing any
available slack, but it may still require a prohibitive amount of overhead for
many applications. Conversely, lazy duplication may demand too much detec-
tion latency to garner sufficient efficiency; later evaluation shows that low-cost
duplication mitigates this deficiency.

4.1.3 Residue Checking

The cost and error coverage of residue checking depends on the width of its
checking modulus. The area of a fast multiplier (both modular and otherwise)
scales quadratically with its input width such that a small checking modulus (e.g.
3 or 15) provides error detection with low overheads relative to a large 32+-bit
multiplier. Because of its ability to efficiently protect large multipliers, residue
checking with small moduli has been widely employed in reliable systems—a
modulus of 3 and 15 are the most popular choices. [21, 22, 23, 31].

In general, large checking moduli are prohibitively expensive, such that
residue checking suffers from some coverage holes, even for relatively weak
single-device errors [12, 10, 30]. For example, a simulation-based error injection
study finds that on average, 7% of unmasked single-device errors in a fast 32-bit
multiplier remain undetected by a modulus-3 code [12]. Low-cost duplicate
multiplication offers complete single-component error coverage, and as such has
much higher error detection coverage than residue checking—this difference
is expected to be especially significant for severe errors. Also, it is likely that
low-cost duplication will have a lower latency than residue checking,1⁶ at the
expense of more checking hardware.

16 The higher latency of residue checking relative to low-cost duplication comes from the need to
generate the residue of the result before checking. The latency of residue generation is inversely
proportional to the modulus width, such that the checking latency is greatest for the smallest
residue codes.

42

It is possible to use multiple co-prime moduli in a multi-residue code for
higher error coverage [115, 116]. Low-cost residue number system duplication
(Section 4.3) can be thought of as an extreme organization of multi-residue cod-
ing where multiple large moduli are used and the product of the chosen moduli
is larger than the dynamic range of the 2N-bit result of multiplication—such a
multi-residue code is strong enough to have complete single-component error
coverage. In this context, it is obvious that single or multi-residue checking can
be less expensive than residue number system duplication, but with incomplete
error coverage against severe errors.

4.2 CARRY-SAVE LOW-COST DUPLICATION

A simple and straightforward scheme for low-cost duplicate multiplication is to
eliminate the final carry-propagate adder in the duplicate multiplier, checking
its result directly in the redundant carry-save representation. This scheme is
referred to as lazy carry-save duplication.

Lazy carry-save duplication can increase efficiency over traditional lazy du-
plication in two ways. First, the cost of a carry-propagate adder is replaced
with a slight increase in the complexity of the modified checker; the cost in-
crease of the checker is strictly equal to or less than that of the carry-propagate
adder, leading to some savings [100]. Second, and more notably, the latency
of carry-propagate addition is avoided; this additional checking slack may be
used to reclaim checking efficiency in a manner similar to lazy duplication. The
latency of this carry-propagation is significant, taking roughly a third of the
time for a logarithmic-time multiplication.1⁷ A visualization of the carry-save
duplication process is shown in Figure 4.2. The carry-save equality checker (Sec-
tion 3.1.2) is used to check the results of multiplication, similar to its application
for fixed-point addition.

Table 4.2 reports the cost of both lazy and lazy carry-save duplication. The
benefits of lazy carry-save duplication are significant and robust; several trends
are of note. Carry-save duplication adds some additional latency relative to
the fastest strict or lazy duplicate designs due to the need to perform modified

17 The 16, 32, and 64-bit baselines spend roughly 28%, 37%, and 29% of their time performing the
carry-propagate addition, respectively.

43

Carry-Prop.
Addition

PP
Gen

PP
Gen

Multi-Operand
Addition

Modi�ed
Checker

Multi-Operand
Addition

Figure 4.2: Carry-propagate addition can be eliminated in the duplicate multi-
plier by employing a carry-save equality checker.

checking following the main multiplication. For any achievable detection latency,
carry-save duplication shows superior efficiency to lazy duplication, achieving
roughly the same area efficiency as a lazy duplicate design with 30% additional
detection slack.

The cost savings of carry-save duplication saturate quickly, such that it is
neither necessary nor profitable to increase the checking latency past 30–40%.
This is because there is sufficient slack in the absence of duplicate carry-propagate
addition to use the least expensive standard cells at this point. For this reason,
lazy duplication and carry-save duplication asymptote to the same efficiency;
carry-save duplication just gets there more quickly. The use of a slower and more
area-efficient design (or the use of a flexible delay-proportional multiplier, such
as the DesignWare PPArch multiplier [117]) would almost certainly allow for
carry-save duplication to provide detection latency-proportional savings.

4.2.1 Carry-Save Karatsuba Duplication

The implementation of carry-save multiplication is straightforward for a fully
parallel, tree-based multiplier like the considered baselines. There are alternative
multiplier architectures, however, where the adoption of carry-save checking is
slightly more nuanced. With careful design, carry-save checking can apply to
a wide class of parallel multipliers. This section demonstrates the flexibility of
carry-save duplication through its application to a Karatsuba multiplier.

Karatsuba multiplication (originally attributed to [118]) is a divide-and-
conquer scheme that is able to perform N-bit fixed-point multiplication using
three N/2-bit multipliers by exploiting Identity 4.1 (where aH , aL, bH , and bL rep-

44

Table 4.2: The overheads of lazy and lazy carry-save duplication. Lazy carry-save
duplication avoids the need for carry-propagate addition in the duplicate unit,
increasing efficiency.

Width (N) Detection
Latency (%)

Lazy Area [µm2]
(+%)

Lazy CS Area
[µm2] (+%)

16
40 02448.4 (69.0) 01869.8 (52.7)
50 02273.8 (64.1) 01665.2 (46.9)
60 02093.2 (59.0) 01670.9 (47.1)

32

30 09672.9 (74.8) 07306.8 (56.5)
40 08380.9 (64.8) 06989.8 (54.0)
50 07855.8 (60.7) 06899.5 (53.3)
60 07299.6 (56.4) 06899.5 (53.3)

64

30 33760.2 (88.4) 28118.6 (73.6)
40 30698.8 (80.4) 27625.9 (72.4)
50 29834.2 (78.1) 27625.9 (72.4)
60 28153.1 (73.7) 27625.9 (72.4)

resent the high and low halves of the input operands a and b, respectively) [101].

�

2
N
2 aH +aL
��

2
N
2 bH +bL
�

= 2NaHbH +aLbL+ (4.1)

2
N
2 ((aH +aL) (bH +bL) –aHbH –aLbL)

Karatsuba multiplication can be somewhat area efficient at large word lengths,
since the area of parallel multiplication tends to scale quadratically and it replaces
a full N-width multiplier with just three smaller N/2 multipliers [101]. However,
hidden in the 2N

2 ((aH +aL) (bH +bL) –aHbH –aLbL) term of Karatsuba multipli-
cation is a lengthy adder carry propagation before the results of (aH +aL) (bH +bL)
can be determined. This additional latency negatively impacts the overall effi-
ciency of the scheme.

An optimized Karatsuba baseline is used that avoids many of the latency
issues with the (aH +aL) (bH +bL) term. By slightly modifying the multiplier, the
inner subtractions (–aHbH –aLbL) can be performed without any carry propa-
gation. This is done as follows: a regular carry-save adder (CSA) is used with
complemented inputs from the aHbH and aLbL multipliers. The two incrementa-
tions necessary for two’s complement arithmetic are achieved in a carry-free
manner by (1) setting the empty carry bit in the least-significant position of
the CSA and (2) placing an extra bit in the partial product generation of the

45

-bit
Low
Mult

-bit
High
Mult

N-bit

Main

Mult

Modi�ed

Equality Check

A

B
Error?

Output

N
2

N
2

Add

-bit Add, Carry-Save
Multiply +1

N
2

-bit
CS

Mult

N
2

Reduce + 1

(a) Carry-Save Karatsuba Duplication Block Diagram

Carry-Prop.
Addition

PP
Gen

PP
Gen

Multi-Operand
Addition

Carry-Prop.
Addition

Multi-Operand
Addition

Modi�ed
Checker

PP
Gen

Multi-Operand
Addition

Carry-Prop.
Addition

PP
Gen

Multi-Operand
Addition

Carry-Prop.
Addition

Reduce

(b) Carry-Save Karatsuba Duplication Visualization

Figure 4.3: Karatsuba multiplication can perform an N-bit fixed-point multiplication using
three N/2-bit multipliers. Carry-free duplication uses a modified checker to eliminate the
carry-propagate addition of the sub-components.

(aH +aL) (bH +bL) multiplier. Neither incrementation has any impact on the
latency or complexity of the resultant duplicate multiplier.

Carry-save Karatsuba duplication uses a carry-save checker for the final
addition of the constituent subcomponents, as shown in Figure 4.3. Table 4.3
reports the overheads of both lazy and carry-free Karatsuba duplication relative
to 16, 32, and 64-bit baseline Karatsubamultipliers. Again, carry-save duplication
shows consistent, robust efficiency improvements. By avoiding the latency of
the final carry-propagate addition, carry-save duplication is able to reach the
efficiency of the asymptotic lazy checker with about a 20% detection latency; it
takes lazy duplication 20–30% more slack to compete.

46

Table 4.3: The overheads of lazy and carry-save Karatsuba duplication
(relative to a baseline Karatsuba multiplier).

Width (N) Detection
Latency (%)

Lazy Area [µm2]
(+%)

Lazy Carry-Save
Area [µm2] (+%)

16

20 02651.1 (66.7) 01988.9 (50.0)
30 02234.1 (56.2) 01799.1 (45.3)
40 01834.9 (46.2) 01697.5 (42.7)
50 01752.9 (44.1) 01693.6 (42.6)
60 01712.0 (43.1) 01693.6 (42.6)

32

10 09888.4 (89.8) N/A
20 09652.1 (87.7) 06800.7 (61.8)
30 07531.7 (68.4) 06183.3 (56.2)
40 06532.1 (59.3) 06044.7 (54.9)
50 06221.2 (56.5) 05908.5 (53.7)
60 06088.2 (55.3) 05888.2 (53.5)

64

10 32499.5 (91.0) N/A
20 30662.8 (85.9) 24355.4 (68.2)
30 27025.9 (75.7) 23073.2 (64.6)
40 24932.4 (69.8) 22947.2 (64.3)
50 23534.6 (65.9) 22827.1 (63.9)
60 23146.7 (64.8) 22812.8 (63.9)

4.3 RESIDUE NUMBER SYSTEM DUPLICATION

A compelling low-cost duplication alternative using the residue number sys-
tem (RNS) is described and evaluated. Before delving into the details of RNS
duplication, the basics of the residue number system are reviewed.1⁸

The residue number system represents integer values using a small number
of non-weighted digits. An RNS number is formed from a weighted number,
X with respect to a set of n co-prime bases,

�

m0|m1|...|mn–1
�

. To convert to the
RNS representation, the residue of X is formed with respect to each base. In
general, the formation of an arbitrary residue

�

|X|m ;m ∈N
�

is expensive; for
efficiency, designs often restrict themselves to specialized moduli in the form
m = 2a± 1, a ∈N. Common arithmetic operations can be performed without
carry propagation between the digits of RNS numbers, significantly increasing
the speed. Operations within each digit are carried out in a modular manner

18 This short summary is felt to be sufficient in the context of low-cost duplication. For a more
formal introduction, the reader is referred to [119]. For a comprehensive treatment of RNS
arithmetic, see [109, 120, 121].

47

Main
Mult

Modi�ed
Equality Check

A

B
Error?

Output

Low-Cost RNS
Check Mult

RNS

Gen

(a) RNS Duplication Block Diagram

Carry-Prop.
Addition

PP
Gen

PP
Gen

Multi-Operand
Addition

PP
Gen

PP
Gen

Modi�ed
Checker

RNS
Gen

Multi-Operand Modular
Addition

Multi-Operand Modular
Addition

Multi-Operand Modular
Addition

Modi�ed
Checker

RNS
Gen

(b) RNS Duplication Visualization

Figure 4.4: A block diagram and visualization of RNS duplication. “RNS Gen” represents
residue generation. Partial product generation and multi-operand addition are modified
specific to each modulus. Multiplication of an RNS-encoded number can proceed more
quickly than its fixed-point counterpart; this extra slack can lead to overall cost savings.

such that the arithmetic result for the RNS digit corresponding to a modulus m
is computed as |X ⊕Y |m = ||X|m⊕ |Y |m|m, where ⊕∈ {+,–,∗}.

Despite their fast arithmetic speed, the general-purpose usefulness of RNS
numbers is greatly limited by practical concerns: bit-wise logical operations,
truncation, division, sign detection and magnitude comparison are all expensive
in this representation, as is the conversion back to a fixed-point format. Low-cost
duplicate RNS multiplication is able to exploit the superior speed and diversi-
fied design of the residue number system while avoiding the aforementioned
limitations. Because the output of the duplicate RNS unit is discarded after
error detection, no expensive operations are performed nor is backwards conver-
sion necessary. Figure 4.4 shows an organization of RNS duplication—the input
operands are converted to the RNS representation, and the modular arithmetic
for each RNS modulus proceeds in parallel.

To evaluate the idea of RNS duplication, an RNS duplicate multiplier is
formed. The residue generator circuitry from [122] is used along with the paral-
lel modular multipliers from [114] (mod 2a–1) and [123] (mod 2a+1). Following

48

Table 4.4: The overheads of residue number system duplication
(relative to the compressor-based fully parallel multiplier).

Width (N) Checking
Latency (%)

Modulus 1
(2a±1) Modulus 2 (2b) Area [µm2] (+%)

16

30 5 23 01982.2 (55.9)
40 5 23 01974.4 (55.7)
50 9 15 01959.6 (55.2)
60 9 15 01913.9 (53.9)

32

30 18 29 08119.9 (62.8)
40 18 29 07323.4 (56.6)
50 17 31 07065.0 (54.6)
60 17 31 06957.2 (53.8)

64

30 41 47 33170.1 (86.9)
40 41 47 31410.9 (82.3)
50 41 47 29938.6 (78.4)
60 41 47 29040.2 (76.1)

the recommendations of [124], a moduli set in the form
�

2a–1, 2a+1, 2b
	

is
employed. Table 4.4 shows the overheads of RNS duplication, along with the
moduli sets used.1⁹ The experimental results indicate that the speed advan-
tages of RNS arithmetic provide modest cost savings in the duplicate multiplier
through increased design slack. Also, because RNS arithmetic is faster than the
main multiplication, there is sufficient slack to saturate these benefits at 30–40%
detection latencies and further detection latency does not significantly lessen
the overheads of detection.

These experimental results demonstrate that RNS duplication can provide
diversified, low-latency duplication that is completely off of the critical path.
This allows RNS duplication to provide strong, fault-agnostic error detection.
The efficiency of RNS duplication is on par with that of lazy carry-save duplica-
tion (Section 4.2). Furthermore, it is possible that the RNS organization and
experimental methodology used in this dissertation could under-represent the
potential efficiency of RNS duplication; Section 4.4.1 describes some of the future
research that these initial results warrant.

19 These moduli sets were chosen through a brief computer-guided search and are expected to be
aggressive but not optimal.

49

4.4 DISCUSSION AND FUTURE WORK

Low-cost duplicate multiplication presents the opportunity for many exciting
avenues of future research. Some discussion of this potential future work follows.

4.4.1 Further RNS Duplication Evaluation

There are several future experiments that may better represent and analyze the
potential advantages of RNS duplication. First, it has been noted that some of the
efficiency advantages of RNS arithmetic come from its increased circuit regularity
relative to two’s complement arithmetic units [101]; these layout advantages are
not taken into account in this work for methodological reasons. Also, initial
experiments indicate that an RNS duplicate multiplier can be faster than the
main arithmetic unit, garnering modest area savings. This high speed could
be better exploited for increased efficiency by more flexible modular multiplier
designs or by using a multi-Vth design flow where small and low power (but
slow) high Vth cells are mixed with their standard Vth equivalents. The use of a
lower supply voltage for the RNS duplicate unit could also lead to substantive
power savings; it has been noted in the past that the speed of RNS arithmetic
allows for reduced-voltage operation [125].

4.4.2 Alternate Number Systems and Organizations

The low-cost duplicate checkers described by this work are based on carry-
save and RNS arithmetic and by no means exhaust the search space. Alternate
low-cost duplicate checkers and different organizations of the described check-
ers undoubtedly exist. Some avenues of future research include other RNS
organizations, including the use of different moduli sets [126, 127, 128], pseudo-
residues [129] or redundancy through non-coprime moduli [130, 131]. Also
promising is the investigation of other number systems where multiplication
is inexpensive, such as the logarithmic number system [132] (or approximate
binary logarithms [133]) and the use of index calculus for inexpensive multiplica-
tion [134].

50

4.4.3 Signed Arithmetic and Multiply-Accumulate

The described low-cost duplication scheme works for signed multiplication and
multiply-accumulate with trivial modifications. Support for signed multiplica-
tion can be achieved by using Booth-recoded parallel prefix generation or with
Baugh-Wooley’s method for fixed-point multipliers [101]. Multiply-accumulate
can be supported by adding an additional level to the multi-operand adder that
accumulates the partial products of multiplication [101]. The modifications for
signed arithmetic and multiply-accumulate are minimal and add roughly the
same complexity to both the main arithmetic unit and duplicate unit. It is there-
fore expected that carry-save duplication will provide efficient error detection
for these operations as well.

51

5 floating-point multiplication

Floating-point numbers are used extensively to represent real and continuous
values in computer systems. The characteristics of floating-point arithmetic
tends to make their protection difficult and costly—because of their piecewise
and complicated nature, there is no arithmetic error code that is closed under
floating-point arithmetic and strict duplication doubles the (already significant)
area and energy costs of floating-point operations. This chapter investigates
the application of low-cost duplication using approximate number systems for
floating-point multiplication.2⁰ This new paradigm is referred to as approximate
duplication, and it is able to provide low-cost precision-proportional error detec-
tion, offering error coverage whose cost is commensurate with the maximum
relative magnitude of any undetected errors.

Figure 5.1 shows a block diagram of approximate duplication. A reduced-
precision duplicate unit uses an approximate number system and a specialized
checker to detect any error that exceeds a known tolerance. Unlike most prior
approaches for floating-point error detection, separability is not compromised—
no communication with the main floating-point unit (FPU) is necessary and
the approximate duplicate unit neither dictates nor reacts to the design of the
protected multiplier.

The use of approximate number representations for the low-cost duplication
of floating-point arithmetic makes intuitive sense taking the specifics of floating-
point numbers into account. Because they seek to represent the infinitely-dense
real number system in a finite number of bits, floating point values are inher-
ently approximate. Concepts such as rounding and imprecision accumulation21
exist, and potentially-unbounded relative imprecision can occur even during
the course of error-free floating-point arithmetic [137]. It is therefore felt that

20 Due to its importance and standardization, this dissertation restricts itself to the IEEE 754-2008
floating point format [135]. It should also be noted that these analyses are focused on the
common-case uses of IEEE 754-2008 floating-point numbers. Corner cases such as exceptions,
denormalized numbers, or design decisions such as partial software support [136] must be
accounted for and protected with other mechanisms.

21 While many sources refer to the accumulation of rounding as “error” [135, 137], here the term
“imprecision” is used in order to differentiate it from arithmetic errors that are the manifestation
of underlying faults.

52

Figure 5.1: Block diagram of approximate duplication. A reduced-precision unit
checks the results of computation (to within a known tolerance).

the fastidious reproduction of inherently-imprecise floating-point arithmetic is
unnecessary and wasteful.

This chapter proceeds as follows. Section 5.1 gives a brief overview of floating-
point multiplication. Section 5.2 describes the few and limited prior approaches
taken towards floating-point error detection. Section 5.3 describes the concept
of approximate duplication for downward-rounded floating point values. The
organization is general enough to apply to a range of approximate multiplication
schemes; one that is based off of truncated multiplication is described in depth.
To investigate the fidelity that is appropriate for approximate duplication, Sec-
tion 5.4 performs application-level error propagation and sensitivity experiments
using floating-point-intensive programs. Finally, Section 5.5 gives some closing
thoughts, caveats, and exciting areas of future research.

5.1 A BRIEF INTRODUCTION TO FLOATING-POINT MULTIPLICATION

A floating-point number represents a real value, RX, using Equation 5.1. An ex-
ponent, e, is used primarily to capture the magnitude of RX in a storage-efficient
manner. The term (1+ sf) is typically referred to as the significand. The value
sf is fractional (0≤sf<1), and in this dissertation the term sf is called the signifi-
cand fraction. Whereas the exponent is used to capture the magnitude of a real
number, the significand is used to provide precision.

RX =± 2e ∗ (1+ sf) (5.1)

53

The multiplication of two floating-point numbers involves multiplying the sig-
nificands and adding the exponents, as shown by Equation 5.2. In terms the
evaluation of computational complexity, circuit area, and latency, the significand
multiplication (1+sfRX)∗(1+sfRY) dominates [101].

RX ∗RY =
�

± 2eRX ∗ (1+ sfRX)
�

∗
�

± 2eRY ∗ (1+ sfRY)
�

(5.2)

=± 2eRX+eRY ∗ (1+ sfRX) ∗ (1+ sfRY)

An IEEE 754 floating-point number is composed of three parts. (1) a sign bit,
used to indicate whether RX is positive or negative, (2) an integer exponent value
(stored in a biased format), and (3) a normalized significand, for which only
the significand fraction is stored (the “hidden” 1-bit is used for calculations but
need not be stored).

The range of each IEEE 754 floating-point significand falls within [1, 2), such
that the product the unmodified significand multiplication is in the range [1, 4).
In order for the output of floating-pointmultiplication to be a valid floating-point
value itself, a significand and exponent adjustment is applied to any significand
product equal or greater than two. This adjustment may be performed by incre-
menting the output exponent and scaling the significand product by 1/2.0 through
shifting it one position to the right. Furthermore, the significand multiplication
must be rounded to fit within the same storage footprint as other floating-point
values; if this rounding again pushes the significand above two, then a second
significand and exponent adjustment is required. Figure 5.2 depicts this floating-
point procedure. The sign and exponent calculations (shown in purple and
green) are simple and straightforward; the cost of the significand multiplication
(shown in pink) dominates, and the rounding and adjustment circuitry (shown
in blue) consumes a modest amount of area but adds a significant amount of
latency and complexity to the multiplication procedure.

Approximate duplication offers compelling efficiency advantages when the
details of floating-point arithmetic implementation are considered. Floating-
point multipliers spend the most area and energy calculating the bits of the result
that impact the magnitude of the result the least, as illustrated in Figure 5.3. The
relative cost of each floating-point arithmetic sub-component is inversely pro-
portional to its impact on the magnitude of the result. Approximate duplication
estimates the expensive significand calculation and does not require rounding

54

Figure 5.2: A block diagram of floating-point multiplication. The exponents
of the inputs are summed, the significands multiplied, and the significand of
the result normalized and rounded to fit within the footprint of the output
number. Sign logic is shown in purple, exponent addition logic is shown in green,
significand multiplication is shown in pink, and normalization and rounding
logic is shown in blue.

Figure 5.3: A depiction of the relative hardware cost of the components in a
floating-point multiplier and their impact on the final magnitude of the result.

and output adjustment circuitry. As a result, approximate duplication is able
to provide efficient floating-point error detection in a precision proportional
manner—the cost of error detection is proportional to the maximum error
introduced by any undetected error.

55

5.2 PRIOR WORK IN FLOATING-POINT ERROR DETECTION

While there is no known arithmetic error code that is closed under floating-
point arithmetic, a non-separable checker has been applied to floating-point
operations [138, 139]. This approach can be thought of as applying residue or
Berger-code-based checking component-by-component in the FPU, with some
sharing of control signals. It is inseparable, assumes an end-to-end protection
scheme, and its error coverage will be limited by the strength of the error codes
it uses.

The intuition that floating-point intensive programs have inherent impreci-
sion (and therefore may be tolerant to error) has been used to justify a partially-
duplicated checker [24, 140]. However, it has been previously observed that
while many scientific codes can tolerate limited floating-point errors, they can
catastrophically fail if the error impacts the most significant bits [141]—the in-
complete coverage of partial duplication leaves a significant chance of failure or
silent data corruption. The error coverage semantics of approximate duplication
(complete error coverage within a known tolerance) allow for the error detection
capabilities to match the error tolerance of scientific applications. In Section 5.4,
application-level error propagation and sensitivity experiments corroborate this
observation. It is shown that many floating-point programs are able to tolerate a
small relative amount of undetected error, but that undetected large errors often
lead to program failure or data corruption.

There is some prior research that serves as a relevant precursor to the con-
cept of approximate duplication. Eibl, Cook, and Sorin [142] present a brief-
yet-significant design that could be considered approximate duplication for
floating-point addition; this dissertation extends the concept of approximate
duplication to the more costly operation of floating-point multiplication, and
also performs application-level error injection to analyze the effects of bounded
error semantics. The use of approximate binary logarithms for approximate du-
plication has also been described for fixed-point multiplication. Davis describes
the concept of using Mitchell’s approximation [133], to check fixed-point mul-
tiplication [143], as do Sellers, Hsiao, and Bearnson [25].22 More recently, two

22 Sellers, Hsiao, and Bearnson also describe use of amore precise approximation [144] for checking
fixed-point multiplication.

56

publications have utilized similar schemes for the concurrent checking of fixed-
point digital signal processing hardware [145, 146]. This dissertation represents
the first application of approximate duplication (with or without approximate
binary logarithms) to floating-point multiplication.

5.3 APPROXIMATEDUPLICATIONBASEDONTRUNCATED MULTIPLICATION

Truncated multiplication23 is often used to control the width of fractional arith-
metic. The output of an N-bit truncated multiplier is the t most-significant-bits
of the full 2N-bit product. This section describes a straightforward approximate
duplicate organization that employs a truncated fractional multiplier to check
the results of floating-point multiplication. For simplicity, downward-directed
floating-point arithmetic is assumed throughout Sections 5.3–5.3.2; the changes
necessary to support other IEEE 754-2008 rounding modes are investigated later
in Section 5.3.3.

Various schemes exist to minimize the error of truncation without resorting
to a fully-rounded result [147, 148, 149, 150, 151, 152]. In lieu of such approaches,
this section employs a simple downward-rounded truncated multiplier—the
semantics of approximate duplication focus on the maximum undetected error,
such that minimizing the average undetected error is of secondary importance.

A downward-rounded truncated multiplier is very simple: it forms and adds
the most-significant positions in the partial product matrix, implicitly forcing
all lesser entries to zero. Table 5.1 illustrates such a multiplier by way of an
example: the results of a 3-bit significand multiplication (before normalization
or rounding) normally would result in a 6-bit full-width product; by using just
the first 3 bits of the partial product matrix, an approximate significand is formed
with a maximum error of 100 ∗ 2–3 = 12.5%. Notice in Table 5.1 that while the
relative error of the result is bounded, the bits of the approximate result can
differ from those of the exact result—for example, 1.75 ∗1.75 differs in multiple
bit positions, despite only having a -10.204% relative error.

23 Truncated multiplication is sometimes also called fixed-width multiplication [147].

57

Table 5.1: An example of truncated multiplication. Two 3-bit significands are
multiplied. DecE and BinE denote the exact result (before normalization or
rounding), and DecA and BinA give the approximate result from a truncated
multiplier using the first three bits of the partial product matrix.

SA SB Product (SZ) Rel. Err. (%)

Dec. Bin. Dec. Bin. DecE BinE DecA BinA

1.00 1.00 1.00 1.00 1.0000 01.0000 1.00 01.00 -00.000
1.00 1.00 1.25 1.01 1.2500 01.0100 1.25 01.01 -00.000
1.00 1.00 1.50 1.10 1.5000 01.1000 1.50 01.10 -00.000
1.00 1.00 1.75 1.11 1.7500 01.1100 1.75 01.11 -00.000
1.25 1.01 1.00 1.00 1.2500 01.0100 1.25 01.01 -00.000
1.25 1.01 1.25 1.01 1.5625 01.1001 1.50 01.10 0-4.000
1.25 1.01 1.50 1.10 1.8750 01.1110 1.75 01.11 0-6.670
1.25 1.01 1.75 1.11 2.1875 10.0011 2.00 10.00 0-8.570
1.50 1.10 1.00 1.00 1.5000 01.1000 1.50 01.10 -00.000
1.50 1.10 1.25 1.01 1.8750 01.1110 1.75 01.11 0-6.670
1.50 1.10 1.50 1.10 2.2500 10.0100 2.25 10.01 -00.000
1.50 1.10 1.75 1.11 2.6250 10.1010 2.50 10.10 0-4.760
1.75 1.11 1.00 1.00 1.7500 01.1100 1.75 01.11 -00.000
1.75 1.11 1.25 1.01 2.1875 10.0011 2.00 10.00 0-8.570
1.75 1.11 1.50 1.10 2.6250 10.1010 2.50 10.10 0-4.760
1.75 1.11 1.75 1.11 3.0625 11.0001 2.75 10.11 -10.204

5.3.1 An Imprecision Threshold Checker for Truncated Significand Multiplication

The use of a truncated significand multiplier to cheapen duplication is fairly
simple—such a scheme has been used in its own right to perform low-power ap-
proximate arithmetic (albeit with correction circuitry to reduce the average-case
imprecision) [153]. The design of the threshold checker necessary to enforce the
semantics of approximate duplication is a bit more nuanced, however.

Ideally, an imprecision threshold checker for approximate duplication could
check whether the relative difference between the exact (yet possibly erroneous)
result and the approximate duplicate result differ by more than the maximum
imprecision of approximation. In general, however, the determination of relative
imprecision between two values requires division,making it prohibitively lengthy
and expensive. To simplify the relative imprecision check, this dissertationmakes
the observation that the output significand is a normalized value—that is, its

58

magnitude falls between [1, 2). Therefore, if the difference between the output of
floating-point multiplication, SRZ and approximate duplication, S′RZ , is given by
SRZ –S′RZ , then a conservative bound on the relative imprecision of the result is
(SRZ – S′RZ)/1.0. The looseness of this bound is maximized when SRZ approaches
2.0, resulting in an effective loss of one bit of precision; therefore, this imprecision
threshold checker can use a t-bit truncated multiplier to check the results of a
floating-point significand multiplication to within a tolerance of 100 ∗2-(t+1)%, a
modest penalty given the simplicity of the checker.

An implementation of the imprecision threshold checker for truncated signifi-
cand multiplication is straightforward. The normalized output of floating-point
multiplication, SRZ , and the output of a t-bit truncated multiplier, S′RZ , are fed
into the checker. A full carry-propagate subtraction is performed on the two
values.2⁴ At the end of the subtraction, if any of the (t–1) most significant bits
are set, then the values differ by more than 100 ∗2-(t+1)%.

5.3.2 Using Truncated Significand Multiplication for Approximate Duplication

A truncated significand multiplier and its imprecision threshold checker can
be employed to form a separable approximate duplicate floating-point multi-
plier. Figure 5.4 shows an organization of this error detector—only the input
floating-point values (RX and RY) and the output of the floating-point multi-
plier, RZ, are required and the scheme is fully separable. (This represents the
first known fully-separable checker floating-point multiplication apart from full
duplication.) The checker proceeds as follows: the sign logic is duplicated and
equality checked, the exponent addition is duplicated with a dual incremented
output, and the significand is approximately duplicated using a truncated multi-
plier. Well-established and simple techniques can produce the dual output of
an addition and its increment [114, 154, 155, 156, 157]; these techniques can be
used to produce the two exponent addition outputs required for the checker
with negligible overhead. The dual outputs from the exponent addition and the
approximate significand are passed to a specialized approximate duplication
equality checker whose design is described below.

24 This carry-propagate subtraction can be significantly simplified because of the reduced width of
the truncated approximate multiplier. However, it still requires a full carry-propagation and a
logarithmic number of logic stages.

59

Figure 5.4: A block diagram of approximate duplication using a truncated signifi-
cand multiplier. The scheme is general enough to use any form of approximation,
so long as it always underestimates the exact result and has a well-characterized
maximum relative imprecision.

The modified approximate equality checker checks for the conditions in
Equation 5.3 and Equation 5.4, where ERZ and SRZ are the exponent and nor-
malized significand of the floating-point product, E′ is the exact output of the
duplicated exponent adder (E′ = RXe +RYe), and S′ is the unnormalized approxi-
mate significand (S′ = (1+RXsf)

s∗ (1+RYsf)). The notation ∧ and ∨ represent a

conditional AND and OR, respectively. Approximate equality (denoted “
?
≈”) is

evaluated using the imprecision threshold checker from Section 5.3.1. Approxi-
mate magnitude comparison (denoted “

s
≥”) is formed in a similar manner—its

purpose is to check for errors in the floating-point normalization logic, and if
it is properly designed then the fact that it compares magnitude approximately
will not have an adverse affect on the error coverage of approximate duplication.
The reasoning behind this statement is explained below.

�

ERZ
?= E′
�

∨
��

ERZ
?= E′ +1
�

∧
�

S′
s
≥ 2.0
��

(5.3)

�

SRZ
?
≈ S′
�

∨
��

SRZ
?
≈

S′

2.0

�

∧
�

S′
s
≥ 2.0
�

�

(5.4)

Approximate magnitude comparison is used in Equation 5.3 and Equation 5.4
to check for errors in the floating-point normalization logic. Given that the
approximate significand is always underestimated using truncatedmultiplication
and has a maximum relative imprecision of MI%, MI ≤ 50%,2⁵ this approximate

25 This expression means that the weakest possible truncated multiplier has less-than-50% relative
maximum error. Larger truncated multipliers have accordingly smaller maximum error.

60

magnitude comparison checks for S′ ≥ MI
100 ∗2.0. Depending on whether there is

an error in the normalization logic and the value of the approximate significand,
the following casesmay occur.2⁶ Thenotation

s
< is used to denote the complement

of the approximate magnitude comparator.

(1) No error in normalization; No normalization; S′
s
< 2.0.

There is no error and nomagnitude comparison imprecision. ERZ = E′

and SRZ ≈ S′.

=⇒ No error detected.

(2) No error in normalization; No normalization; S′
s
≥ 2.0.

There is no error and no normalization but the approximate compar-
ison indicates that there is normalization due to imprecision. The
equality tests ERZ = E′ and SRZ ≈ S′ resolve despite this comparison
approximation.

=⇒ No error detected.

(3) No error in normalization; Normalization occurs; S′
s
≥ 2.0.

There is no error. Whenever normalization occurs the approximate
comparison is precise due to the comparison threshold; therefore,
equality tests ERZ = E′ +1 and SRZ ≈ S′

2.0 resolve along with S′
s
≥ 2.0.

=⇒ No error detected.

(4) Erroneous normalization performed; S′
s
< 2.0.

An erroneous normalization corrupts the exponent and significand
of the FPU product. The equality tests for ERZ = E′ +1 and SRZ ≈ S′

2.0

resolve, but S′
s
≥ 2.0 fails.

=⇒ Error detected.

(5) Missing normalization; S′
s
≥ 2.0.

Normalization does not occur despite the fact that it should. In this

26 These six cases exhaust the possibilities given a single-component error. In the case of simulta-
neous errors in both the checker and FPU, other situations may occur and error coverage will be
impacted.

61

case, ERZ = E′ and the produced significand will be truncated to form
a fractional significand, corrupting its value. The magnitude of this
significand corruption necessarily causes the test SRZ

?
≈ S′ to fail.

If the error-free unnormalized significand is 2.0, the missing normal-
ization corrupts the output normalized significand to 1.0 such that
SRZ ≈ S′

2.0 . However, ERZ 6= E′ +1 such that the approximate equality
check still fails.

=⇒ Error detected.

(6) Erroneous normalization performed; S′
s
≥ 2.0.

An erroneous normalization corrupts the exponent and significand of
the generated product, and S′

s
≥ 2.0 due to approximation imprecision.

The equality tests for ERZ = E′ + 1 and SRZ ≈ S′
2.0 resolve along with

S′
s
≥ 2.0.

In this case, no error is detected. Due to the semantics of the approxi-
mate magnitude comparison, however, it is known that the error-free
significand is at most the imprecision threshold checker’s threshold
less than 2.0. The corruption to the exponent and significand of the
floating-point product due to an erroneous normalization therefore
causes a worse-case magnitude change that is within the guaranteed
bound of approximate duplication.

=⇒ Error undetected, but the magnitude of the error is bounded and
=⇒ the semantics of approximate duplication are preserved.

Approximate duplication provides fully-separable error detection for floating-
point multiplication through four mechanisms. (1) The sign equality checker
precisely checks the sign of the output with very little overhead; (2) the exponent
addition equality checker precisely checks the exponent (apart from erroneous
incrementation); (3) the imprecision threshold checker checks the significand to
within a guaranteed bound; (4) the normalization logic dictated by Equation 5.3
and Equation 5.4 allows normalization to proceed without causing false-positives,
checks for erroneous incrementation in the exponent, and checks for erroneous
normalization.

62

5.3.3 Separable Detection of Different Floating-Point Rounding Modes

Having established how approximate duplication can provide separable error
detection for downward-directed multiplication, this section extends the approx-
imate duplicate checker to handle the added complexities of the other rounding
modes in the IEEE 754-2008 standard.

The main intuition behind the separable checking of rounding modes with
approximate duplication is that any single incorrectly-rounded value does not
significantly affect the magnitude of the result—rounding occurs at the least-
significant position of the significand, such that its effect is minuscule compared
to the threshold of approximate duplication. Therefore, any corruption due
to rounding imprecision can be subsumed into the guaranteed error bound
and allowed without changing the behavior or error semantics of approximate
duplication.

In order to satisfy the semantics of approximate duplication in the presence
of rounding errors, a small additional amount of rounding imprecision must
be incorporated into the threshold checker and the approximate magnitude
comparators. In practice, this is not expected to change the circuits at all—
the approximate checkers and comparators already take a loose bound on the
maximum relative imprecision for simplicity (see Section 5.3.1).

5.3.4 Use of Other Approximation Schemes and Number Systems

The approximate-duplication organization is general enough to apply to a large
class of approximate multiplication schemes and number systems. So long as the
maximum relative imprecision of approximate significand multiplication is well-
characterized, approximate duplication should work. A few design caveats of the
specific organization presented here apply; these caveats are not fundamental to
the concept of approximate duplication, but are rather due to simplifying assump-
tions made for conceptual clarity and implementation efficiency. (1) this chapter
assumes that the approximate significand multiplier always under-estimates the
true product; (2) the imprecision threshold checker from Section 5.3.1 uses a
loose imprecision bound and will not benefit from improved precision that does

63

not cross a power-of-two threshold;2⁷ (3) the described imprecision threshold
checker only reacts to the maximum relative imprecision of an approach, and
average-case precision improvements will be squandered.

Multiplication through approximate binary logarithms ([133, 144, 158, 159, 160,
161] and others) is an attractive alternative to truncated significandmultiplication
for approximate duplication. Following approximate conversion to the logarith-
mic number system (LNS), multiplication can be performed with the superior
speed and efficiency of addition. Approximate binary logarithms have been
proposed for the checking of fixed-point multiplication [25, 143, 145, 146] and
they should apply to approximate duplication for floating-point multiplication
so long as the checker is modified to handle an LNS input. While approximate
LNS duplication is worth investigating, its use has been forgone in favor of
the conceptually-simpler truncated fractional multiplier until the conceptual
foundations of approximate duplication are solidly established.

5.4 APPLICATION-LEVEL ERROR INJECTION AND SENSITIVITY STUDY

So far, it has been established that approximate duplication can offer separable
error detection for floating-point arithmetic with full error coverage within a
known tolerance. The use of truncated multiplication for approximate signifi-
cand duplication has been described; truncated multiplication can be parameter-
ized at design time to provide precision-proportional error detection, offering
arbitrarily high error coverage with commensurate costs.

To investigate the fidelity that is appropriate for approximate duplication, an
application-level error injection campaign is conducted. These error injection re-
sults focus on transient errors in high-performance computing (HPC) programs.
Such transient errors are especially concerning for scientific applications, as they
have a high associated risk of silent data corruption—other more permanent
errors are expected to quickly lead to fail-stop scenarios which then no longer
impact the correctness of the application.

27 Going from 12.5% = 2-3 maximum relative imprecision to 7.5% = 2-3.737 will not improve the
bound of approximate duplication using the current imprecision threshold checker, for instance,
but going past 6.25% = 2-4 will.

64

5.4.1 Binary Instrumentation-Based Error Injector

This dissertation employs an error-injection methodology that simulates the
effect of unmasked and undetected FPU faults (in logic or latches) using syn-
thetic error models to produce representative errors. This is done using a fast,
binary-instrumentation-based [162] error injector.

An important design component of the error injection methodology is
that it only considers errors that go undetected by hardware error-detection
mechanisms—the experiments in this dissertation investigate the coverage of
partial duplication (similar to [24, 140]) and approximate duplication. Both par-
tial duplication and approximate duplication offer incomplete single-component
error coverage, potentially allowing some uncaught errors. The bounded error
semantics of approximate duplication, however, are well-aligned with program
needs and can be used by naturally-resilient algorithms to ensure reliable execu-
tion without the costs associated with a complete duplicate checker. By injecting
undetected errors, the application-level implications of the error semantics of
different checkers can be readily studied.

5.4.1.1 comparison to prior error injectors

Error injection has long been performed at different system levels in order to
test reliability mechanisms and to study error sensitivity and propagation in
circuits, architectural organizations, or applications [22]. Error injectors based
on RTL-level injection [163, 164, 165] or cycle-accurate-simulation [166, 167, 168]
have the potential to be accurate, but they lack the speed to study application-
level error propagation at-scale. Application-level error injectors exist through
compiler-based instrumentation through LLVM [169], the program debugging
interface [170], virtual machines [169, 171], field-programmable-gate-array based
acceleration [172, 173] and binary instrumentation [174].

The error injection tool used in this dissertation is likely to be similar in
speed to the LLVM and virtual-machine based approaches, but with the supe-
rior flexibility of binary instrumentation—a trait shared by the other published
binary-instrumentation-based injector [174]. Due to its superior flexibility, bi-
nary instrumentation does not require special recompilation to inject errors into
a program, and it can detach following error injection, roughly doubling the

65

average execution speed of error injection. The detection-mechanism-aware
injection methodology employed by the error injector in this dissertation is
unique; prior application-level error injectors either describe a narrow and syn-
thetic error model for transient faults (such as a single bit-flip at the output of an
instruction [169, 170, 171, 174]), inject into an unprotected circuit model [172, 173],
or do not specify how an injected error is expected to manifest.

5.4.2 Error Injection Results

Figure 5.5 shows the results of the error injection campaign. Seven floating-point
intensive NAS parallel benchmarks 2⁸ [175] are evaluated using the non-trivial

“A” input set, and the co-design mini-app CoMD [176] is run to completion. This
experiment utilizes the NAS parallel benchmarks because of their relevance to
HPC workloads, and also because they have well-defined acceptance procedures;
these acceptance tests are used to judge whether an unacceptable level of silent
data corruption occurs following an injected error. The CoMD miniapp is
used because of its relevance to the emerging co-design paradigm; the fact that
it also has programmer-specified assertions makes it interesting to study, as
well. Because CoMD lacks a verification procedure, any human-visible output
corruption is assumed to be significant.2⁹

Six error detection schemes are evaluated with a synthetic error model that
replaces any unprotected bits with a randomly generated value. The “random”
scheme represents an unprotected floating-point multiplier—no bits are pro-
tected from potential corruption. The “mantrand” scheme represents partial
duplication of the sign and exponent logic (with some non-separable communi-
cation from the rounding and normalization logic3⁰)—the effects of errors are
localized to the normalized significand. The remaining error detection schemes,
denoted “mantrand2” through “mantrand16”, represent varying levels of ap-
proximate duplication using a truncated significand multiplier. These schemes
provide error coverage for the 2–16 most significant bits of the fractional sig-
nificand product, respectively, bounding any undetected error to the lesser bits.

28 To simplify error injection, this experiment uses a serial version of each benchmark.
29 The program-generated, human-readable output file that is generated by CoMD has truncated

output values so small relative errors may not be human-visible.
30 This communication is not simulated, and it is assumed that the sign and exponent are protected

with complete error coverage.

66

Figure 5.5: The results of an application-level error injection campaign for floating-point
multiplication. Ten thousand undetected errors are injected into each of six error detection
schemes per program; each error detection scheme is chosen to be representative of a
partial duplication or approximate duplication organization. The results of every injected
error are classified and tabulated based on their effect on the program output.

67

This is somewhat representative of approximate duplication, though it does not
faithfully model the truncated significand multiplier.

Ten thousand undetected floating-point multiplier errors are injected per
error detection scheme for every benchmark; the application-level manifestation
of each undetected error is tracked using a Python-based support framework.
Each injected undetected error is classified into one of three categories: a verified
run passes the verification procedure without problem, a crash indicates that a
segmentation-fault, arithmetic exception, or other critical failure has occurred,
and silent data corruption (SDC) indicates that the undetected error causes the
verification procedure to fail.

Several results are of note. First, almost every program is susceptible to
significant levels of silent data corruption unless the floating-point multiplier is
protected. Partial duplication reduces the silent data corruption rate across-the-
board, but its relative rate of improvement is highly variable. Some programs
(such as CoMD) see little improvement due to partial duplication, while others
(bt and lu) see more drastic SDC rate reductions. Some programs such as sp
and CoMD still see significant rates of silent data corruption despite partial
duplication, showing the partial duplication organization to be insufficient for
providing high levels of reliability.

In general, approximate duplication shows a clear and consistent trend—
higher bounded error detection coverage leads to lower SDC rates,31 demon-
strating the effectiveness of its protection-proportional approach towards error
detection. The amount of approximate fidelity required for different bench-
marks differs, however—lu responds well to 4 bits of significand protection,
many benchmarks respond well to 8 bits of protection, and sp and CoMD seem
favorable to 16 bits of protection. Finally, ft seems to require more than 16 bits
of error detection coverage to achieve low SDC rates, such that perhaps full
duplication is a preferable solution. On the other end of the spectrum, cg is
almost completely fault tolerant, and probably requires no FPU error detection.
These two extreme benchmarks, ft and cg, motivate the fully-separable design of
approximate duplication—due to its separability, the checker can be easily gated
and disabled in the case that approximate duplication is unneeded or insufficient.

31 The benchmark ft shows a small deviation from this trend, perhaps due to experimental noise.

68

CoMD is the only benchmark that has programmer assertions; these are
the source of its crashes. Two items of note can be said about the programmer
assertions: first, they are insufficient to greatly lower the SDC rate of CoMD.
Also, any level of hardware-based error detection does as well as the assertions,
rendering them superfluous for the purpose arithmetic error detection.

5.5 DISCUSSION AND FUTURE WORK

This chapter demonstrates the ability of approximate duplication to provide the
first known fully-separable error detector for floating-point multiplication (apart
from full duplication). Several nuanced design decisions, higher-level support
implications, and exciting avenues of future research follow.

5.5.1 The Use of Carry-Save Duplication for Exponent Checking

Carry-save duplication (Section 3) could be employed to perform the dual-output
exponent equality check required for approximate duplication. Floating-point
multipliers are typically pipelined, however, and it is likely that the cost savings
from carry-save duplication would likely be outweighed by the data movement
costs of its deferred checking.

5.5.2 The Use of Lazy Carry-Save Duplication for Significand Checking

It is attractive to try and keep the outputs of the truncated significand multi-
plier in a carry-save format, and to use lazy carry-save duplication (Section 4.2)
for the approximate significand equality check. It is not possible, however, to
perform magnitude comparison between carry-save inputs without a full carry-
propagation [102], such that this representation is not suitable for the approxi-
mate equality checks used for the significand-checking logic.

5.5.3 The Use of RNS Duplication for Significand Checking

Another seemingly-attractive error detection scheme may be to apply RNS
duplication (Section 4.3) for precise significand checking. RNS duplication, how-
ever, requires substantial modification to support truncated multiplication. The
truncation operation, while trivial in a weighted fixed-point representation, is

69

Figure 5.6: A block diagram of flexible approximate duplication. The maximum
relative checking error is tunable and can be determined at runtime.

somewhat expensive for an RNS number [109, 120, 121]. Such modification, and
an analysis of the best full-coverage low-cost duplicate scheme for floating-point
multiplication, is left for future work.

5.5.4 Correctly Diagnosing Permanent Failures

The observation from Section 5.3.3 that an error in rounding logic is insignificant
does not necessarily hold in the case that a permanent fault occurs in the round-
ing control logic. This is also true of permanent faults in the least-significant bit
positions of the significand multiplier—both permanent errors in rounding logic
and in the least-significant bits of multiplication will be missed by approximate
duplication, and large amounts of error may accumulate over time. Therefore, in
order to correctly diagnose permanent failures, the multipliers that are protected
by approximate duplication should be periodically tested using higher-level
procedures such as full spatial duplication or built-in-self-tests.

5.5.5 Dynamically Tunable Coverage

The error semantics of approximate duplication (complete error coverage within
a known tolerance) are well-suited to the low-cost, precision-proportional check-
ing of floating-point arithmetic. The error injection results from Section 5.4,
however, indicate that no single level of approximate fidelity is appropriate for
all applications. This motivates the development of dynamically adaptable dupli-
cate approximation schemes that can incorporate domain-specific sensitivity

70

knowledge or program analysis for superior error detection efficiency without
risking silent data corruption or program failure.

Figure 5.6 illustrates the organization of dynamically tunable approximate
duplication; the maximum relative checking error is flexible and can be deter-
mined at runtime. Dynamic adaptation of the checking tolerance at runtime
may be especially useful for scientific applications, as there is some evidence that
they can exhibit both a high sensitivity and a resilience to silent data corruption
in the same program [177, 178, 179]. There are compelling iterative approxima-
tion and variable-precision multiplication approaches that might form the basis
of this dynamic adaption [161, 180, 181, 182]. However, a complete description
and evaluation of dynamically tunable approximate duplication is left for future
work.

71

6 summary & broader applicability

This dissertation presents and evaluates the concept of low-cost duplication for
strong, efficient, fault-agnostic arithmetic error detection. Low-cost duplication
employs a redundant arithmetic unit using a specialized number system to
check the results of arithmetic. The use of an alternate number representation
allows the duplicate checker to potentially be faster and more efficient than the
protected arithmetic unit. Because the specialized arithmetic result is discarded
after error detection, the downsides of non-standard number systems (such as
redundant storage or imprecision accumulation) have no effect on the overall
system. The high error coverage and superior speed of the low-cost duplicate
organization may lend itself to other domains. Some future possibilities follow.

6.0.6 Security Applications

Low-cost duplication focuses on providing complete protection against single
component errors—any feasible arithmetic fault can be detected so long as it is
confined to either the main arithmetic unit or the low-cost duplicate checker.
This error model represents complete protection against the rare, random, inde-
pendent faults that typically impact system reliability,32. There is some interest
in the security community in detecting arbitrary component errors to guard
against laser fault injection, where a targeted fault is induced by a nefarious
agent [183, 184, 185]. While an analysis of the security potential of low-cost
duplication is outside the scope of this study, it seems that the scheme may be
a amenable to such applications. This may be especially true for RNS duplica-
tion, as the residue number system has a long pedigree of highly fault-tolerant
behavior [101, 120]—by adding an additional redundant residue (and further
modifying the equality checking circuit) it should be possible to tolerate more
than one faulty component.

32 As discussed in Section 2 design faults and timing violationsmay not be randomand independent.
Established techniques can be used to handle such faults using low-cost duplication.

72

6.0.7 Stochastic or Timing-Speculative Computing

It may be possible to exploit the benefits of low-cost duplication—strong, separa-
ble, low-latency error detection—to operate with unreliable hardware [65, 186]
or with reduced timing and voltage margins [80, 81], increasing common-case
efficiency while preserving correctness. The strength of low-cost duplication is
crucial in such an approach, as it is necessary to guarantee correctness in the
presence of errors.33 Separability is important, as well, to allow for the most opti-
mized and efficient main arithmetic unit to be used. Finally, low-latency error
detection is important for this application of error detection, as the arithmetic
error rate will be artificially inflated and low-latency detection cheapens fast
microarchitectural replay [15].

33 Some prior work investigates the use of residue checking for such a purpose [187], but it cannot
guarantee correctness.

73

references

[1] M. B. Sullivan and E. E. Swartzlander, Jr., “Low-cost duplicate multiplica-
tion,” in Proceedings of the Symposium on Computer Arithmetic (ARITH),
2015.

[2] K. Constantinides, S. Plaza, J. Blome, B. Zhang, V. Bertacco, S. Mahlke,
T. Austin, and M. Orshansky, “BulletProof: a defect-tolerant CMP switch
architecture,” in Proceedings of the International Symposium on High Per-
formance Computer Architecture (HPCA), 2006, pp. 5–16.

[3] Y. Li, S. Makar, and S. Mitra, “CASP: Concurrent autonomous chip self-
test using stored test patterns,” in Proceedings of the Conference on Design,
Automation, and Test in Europe (DATE), 2008, pp. 885–890.

[4] Y. Li, O. Mutlu, D. Gardner, and S. Mitra, “Concurrent autonomous
self-test for uncore components in system-on-chips,” in Proceedings of
the VLSI Test Symposium (VTS), 2010, pp. 232–237.

[5] M. Majeed, D. Ahlström, U. Ingelsson, G. Carlsson, and E. Larsson, “Effi-
cient embedding of deterministic test data,” in Proceedings of the Asian
Test Symposium (ATS), 2010, pp. 159–162.

[6] N. Touba and E. McCluskey, “Logic synthesis of multilevel circuits with
concurrent error detection,” IEEETransactions onComputer-AidedDesign
of Integrated Circuits and Systems, vol. 16, pp. 783–789, 1997.

[7] M. Nicolaidis, R. Duarte, S. Manich, and J. Figueras, “Fault-secure parity
prediction arithmetic operators,” IEEE Design and Test of Computers,
vol. 14, no. 2, pp. 60–71, April–June 1997.

[8] M. Nicolaidis and R. Duarte, “Fault-secure parity prediction Booth mul-
tipliers,” IEEE Design and Test of Computers, vol. 16, no. 3, pp. 90–101,
July–September 1999.

[9] M. Nicolaidis, “Carry checking/parity prediction adders and ALUs,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, pp.
121–128, 2003.

74

[10] I. A. Noufal and M. Nicolaidis, “A CAD framework for generating self-
checking multipliers based on residue codes,” in Proceedings of the Confer-
ence on Design, Automation, and Test in Europe (DATE), 1999, pp. 122–129.

[11] J.Wakerly, “Partially self-checking circuits and their use in performing log-
ical operations,” IEEE Transactions on Computers, vol. C-23, pp. 658–666,
1974.

[12] A. Pan, J. Tschanz, and S. Kundu, “A low cost scheme for reducing silent
data corruption in large arithmetic circuits,” in Proceedings of the Interna-
tional Symposium on Defect and Fault Tolerance in VLSI Systems (DFT),
2008, pp. 343–351.

[13] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D. W. Kim, D. H. Yoon, L. Kaplan,
and M. Erez, “Containment Domains: A scalable, efficient, and flexible
resilience scheme for Exascale systems,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis (SC), 2012, pp. 1–11.

[14] S. Tarnick, “Controllable self-checking checkers for conditional concur-
rent checking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 14, pp. 547–553, 1995.

[15] M. de Kruijf and K. Sankaralingam, “Idempotent processor architecture,”
in Proceedings of the International Symposium on Microarchitecture (MI-
CRO), 2011, pp. 140–151.

[16] J. Bartlett, J. Gray, and B. Horst, “Fault tolerance in Tandem computer
systems,” inThe Evolution of Fault-Tolerant Computing, Vienna, Austria:
Springer, 1987, no. 1, pp. 55–76.

[17] M. Mueller, L. Alves, W. Fischer, M. Fair, and I. Modi, “RAS strategy for
IBM S/390 G5 and G6,” IBM Journal of Research and Development, vol. 43,
pp. 875–888, 1999.

[18] L. Alves, M. Fair, P. Meaney, C. Chen, W. Clarke, G. Wellwood, N. Weber,
I. Modi, B. Tolan, and F. Freier, “RAS design for the IBM eServer z900,”
IBM Journal of Research and Development, vol. 46, pp. 503–521, 2002.

75

[19] M. Fair, C. Conklin, S. Swaney, P. Meaney, W. Clarke, L. Alves, I. Modi,
F. Freier, W. Fischer, and N. Weber, “Reliability, Availability, and Service-
ability (RAS) of the IBM eServer z990,” IBM Journal of Research and
Development, vol. 48, pp. 519–534, 2004.

[20] D. Bernick, B. Bruckert, P. Vigna, D. Garcia, R. Jardine, J. Klecka, and
J. Smullen, “NonStop advanced architecture,” in Proceedings of the Inter-
national Conference on Dependable Systems and Networks (DSN), 2005,
pp. 12–21.

[21] M. Hsiao, W. Carter, J. Thomas, and W. Stringfellow, “Reliability, Avail-
ability, and Serviceability of IBM computer systems: A quarter century of
progress,” IBM Journal of Research and Development, vol. 25, pp. 453–468,
1981.

[22] D. K. Pradhan, Ed., Fault-Tolerant Computing: Theory and Technique,
Old Tappan, NJ: Prentice Hall Inc., 1986, vol. I.

[23] W. Clarke, L. Alves, T. Dell, H. Elfering, J. Kubala, C. Lin, M. Mueller, and
K. Werner, “IBM System z10 design for RAS,” IBM Journal of Research
and Development, vol. 53, pp. 120–130, 2009.

[24] M. Maniatakos, P. Kudva, B. Fleischer, and Y. Makris, “Low-cost con-
current error detection for floating-point unit (FPU) controllers,” IEEE
Transactions on Computers, vol. 62, pp. 1376–1388, 2013.

[25] F. Sellers, M. Hsiao, and L. Bearnson, Error Detecting Logic for Digital
Computers, New York, NY: McGraw-Hill, 1968.

[26] T. Austin, “DIVA: A reliable substrate for deep submicron microarchitec-
ture design,” in Proceedings of the International Symposium on Microarchi-
tecture (MICRO), 1999, pp. 196–207.

[27] M. Hajkazem and A. Baniasadi, “A power-aware alternative
for fault-tolerant multipliers,” in Proceedings of the Work-
shop on Resilient Architectures (WRA), 2012. [Online]. Avail-
able: http://wra.ece.utexas.edu/WRA2012/Program_files/LFM-Final-
Submitted.pdf

76

http://wra.ece.utexas.edu/WRA2012/Program_files/LFM-Final-Submitted.pdf
http://wra.ece.utexas.edu/WRA2012/Program_files/LFM-Final-Submitted.pdf

[28] W. W. Peterson, “On checking an adder,” IBM Journal of Research and
Development, vol. 2, pp. 166–168, 1958.

[29] A. Avizienis, “Arithmetic error codes: Cost and effectiveness studies for
application in digital system design,” IEEE Transactions on Computers,
vol. C-20, pp. 1322–1331, 1971.

[30] U. Sparmann and S. Reddy, “On the effectiveness of residue code checking
for parallel two’s complement multipliers,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 4, pp. 227–239, 1996.

[31] A. Avizienis and J. Kelly, “Fault tolerance by design diversity: Concepts
and experiments,” Computer, vol. 17, pp. 67–80, August 1984.

[32] E. Krimer, “Improving energy efficiency of reliable massively-parallel
architectures,” Ph.D. Dissertation, University of Texas at Austin, 2012.

[33] IEEE Technical Committee on Real-Time Systems, “Terminology and
Notations,” http://tcrts.org/education/terminology-and-notation/, 2014.

[34] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi, “Modeling
the effect of technology trends on the soft error rate of combinational logic,”
in Proceedings of the International Conference on Dependable Systems and
Networks (DSN), 2002, pp. 389–398.

[35] T. Karnik and P. Hazucha, “Characterization of soft errors caused by single
event upsets in CMOS processes,” IEEE Transactions on Dependable and
Secure Computing, vol. 1, pp. 128–143, 2004.

[36] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The impact of tech-
nology scaling on lifetime reliability,” in Proceedings of the International
Conference on Dependable Systems and Networks (DSN), 2004, pp. 177–186.

[37] D. K. Schroder and J. A. Babcock, “Negative bias temperature instability:
Road to cross in deep submicron silicon semiconductor manufacturing,”
Journal of Applied Physics, vol. 94, pp. 1–18, 2003.

[38] J. W. McPherson, “Reliability challenges for 45nm and beyond,” in Pro-
ceedings of the Design Automation Conference (DAC), 2006, pp. 176–181.

77

http://tcrts.org/education/terminology-and-notation/

[39] D. F. Heidel, K. P. Rodbell, E. H. Cannon, C. Cabral, M. S. Gordon,
P. Oldiges, and H. H. K. Tang, “Alpha-particle-induced upsets in ad-
vanced CMOS circuits and technology,” IBM Journal of Research and
Development, vol. 52, pp. 225–232, 2008.

[40] J. F. Ziegler, “Terrestrial cosmic ray intensities,” IBM Journal of Research
and Development, vol. 42, pp. 117–140, 1998.

[41] P. Dodd and L. Massengill, “Basic mechanisms and modeling of single-
event upset in digital microelectronics,” IEEE Transactions on Nuclear
Science, vol. 50, pp. 583–602, 2003.

[42] D. Munteanu and J.-L. Autran, “Modeling and simulation of single-event
effects in digital devices and ICs,” IEEE Transactions on Nuclear Science,
vol. 55, pp. 1854–1878, 2008.

[43] T. Uemura, T. Kato, H. Matsuyama, K. Takahisa, M. Fukuda, and
K. Hatanaka, “Investigation of multi cell upset in sequential logic and
validity of redundancy technique,” in Proceedings of the Online-Testing
Symposium (IOLTS), 2011, pp. 7–12.

[44] R.Harada, Y.Mitsuyama,M.Hashimoto, andT.Onoye, “Neutron induced
single event multiple transients with voltage scaling and body biasing,” in
Proceedings of the International Reliability Physics Symposium (IRPS), 2011,
pp. 3C.4.1–3C.4.5.

[45] L. Massengill, A. Baranski, D. Van Nort, J. Meng, and B. Bhuva, “Analysis
of single-event effects in combinational logic-simulation of the AM2901
bitslice processor,” IEEE Transactions on Nuclear Science, vol. 47, pp.
2609–2615, 2000.

[46] F. Wang and Y. Xie, “Soft error rate analysis for combinational logic using
an accurate electrical masking model,” IEEE Transactions on Dependable
and Secure Computing, vol. 8, pp. 137–146, 2011.

[47] E. Normand, “Single-event effects in avionics,” IEEE Transactions on
Nuclear Science, vol. 43, pp. 461–474, 1996.

78

[48] T. Heijmen, “Radiation-induced soft errors in digital circuits–a literature
survey,” Philips Electronics B.V., Tech. Rep. #828, 2002.

[49] E. Cannon, D. Reinhardt, M. Gordon, and P. Makowenskyj, “SRAM SER
in 90, 130 and 180 nm bulk and SOI technologies,” in Proceedings of the
International Reliability Physics Symposium (IRPS), 2004, pp. 300–304.

[50] F. Wang, Y. Xie, K. Bernstein, and Y. Luo, “Dependability analysis of
nano-scale FinFET circuits,” in Proceedings of the Symposium on Emerging
VLSI Technologies and Architectures (ISVLSI), 2006, pp. 399–404.

[51] L. Zeng and P. Beckett, “Soft Error Rate Estimation in Deep Sub-micron
CMOS,” in Proceedings of Pacific Rim International Symposium on Depend-
able Computing (PRDC), 2007, pp. 210–216.

[52] V. Chandra and R. Aitken, “Impact of technology and voltage scaling on
the soft error susceptibility in nanoscale CMOS,” in Proceedings of the
International Symposium on Defect and Fault Tolerance in VLSI Systems
(DFT), 2008, pp. 114–122.

[53] M. Gadlage, J. Ahlbin, B. Narasimham, B. Bhuva, L. Massengill, and
R. Schrimpf, “Single-event transient measurements in nMOS and pMOS
transistors in a 65-nm bulk CMOS technology at elevated temperatures,”
IEEE Transactions on Device and Materials Reliability, vol. 11, pp. 179–186,
2011.

[54] W. Kuo,W. T. K. Chien, and T. Kim, Reliability, Yield, and Stress Burn-in: A
Unified Approach for Microelectronics Systems Manufacturing & Software
Development, Norwell, MA: Klewer Academic Publishers, 1998.

[55] T. Kim and W. Kuo, “Modeling manufacturing yield and reliability,” IEEE
Transactions on Semiconductor Manufacturing, vol. 12, pp. 485–492, 1999.

[56] C. Hu, D. Canaperi, S. Chen, L. Gignac, B. Herbst, S. Kaldor, M. Kr-
ishnan, E. Liniger, D. Rath, D. Restaino et al., “Effects of overlayers on
electromigration reliability improvement for Cu/low K interconnects,”
in Proceedings of the International Reliability Physics Symposium (IRPS),
2004, pp. 222–228.

79

[57] E. Takeda, R. Izawa, K. Umeda, and R. Nagai, “AC hot-carrier effects in
scaled MOS devices,” in Proceedings of the International Reliability Physics
Symposium (IRPS), 1991, pp. 118–122.

[58] J. H. Stathis, “Reliability limits for the gate insulator in CMOS technology,”
IBM Journal of Research and Development, vol. 46, pp. 265–286, 2002.

[59] H. Sharangpani and M. Barton, “Statistical analysis of floating point flaw
in the Pentium processor,” Intel Corporation, Tech. Rep., 1994. [Online].
Available: http://www.intel.com/support/processors/pentium/sb/cs-
013005.htm

[60] “For Intel, it’s a case of FPU all over again.” Elec-
tronic Engineering Times, May 1997. [Online]. Available: http:
//www.fool.com/EETimes/1997/EETimes970516d.htm

[61] “Consumer Price Index (CPI) inflation calculator,” Web. [Online].
Available: http://www.bls.gov/data/inflation_calculator.htm

[62] P. Larsson, “Power supply noise in future IC’s: A crystal ball reading,”
in Proceedings of the Conference on Custom Integrated Circuits, 1999, pp.
467–474.

[63] V. J. Reddi, S. Kanev, W. Kim, S. Campanoni, M. D. Smith, G.-Y. Wei, and
D. Brooks, “Voltage noise in production processors,” IEEEMICRO, vol. 31,
no. 1, pp. 20–28, January 2011.

[64] V. Reddy, A. T. Krishnan, A. Marshall, J. Rodriguez, S. Natarajan, T. Rost,
and S. Krishnan, “Impact of negative bias temperature instability on digital
circuit reliability,”Microelectronics Reliability, vol. 45, no. 1, pp. 31–38, 2005.

[65] S. Borkar, “Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation,” IEEE Micro, vol. 25,
no. 6, pp. 10–16, 2005.

[66] “AMD reports potential heat problem with some Opteron
chips,” Information Week, April 2006. [Online]. Avail-
able: http://www.informationweek.com/amd-reports-potential-heat-
problem-with-some-opteron-chips/d/d-id/1042705?

80

http://www.intel.com/support/processors/pentium/sb/cs-013005.htm
http://www.intel.com/support/processors/pentium/sb/cs-013005.htm
http://www.fool.com/EETimes/1997/EETimes970516d.htm
http://www.fool.com/EETimes/1997/EETimes970516d.htm
http://www.bls.gov/data/inflation_calculator.htm
http://www.informationweek.com/amd-reports-potential-heat-problem-with-some-opteron-chips/d/d-id/1042705?
http://www.informationweek.com/amd-reports-potential-heat-problem-with-some-opteron-chips/d/d-id/1042705?

[67] R. Perry, “IDDQ testing in CMOS digital ASICs,” Journal of Electronic
Testing, vol. 3, pp. 317–325, 1992.

[68] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“SWIFT: Software implemented fault tolerance,” in Preceedings of the Inter-
national Symposium on Code Generation and Optimization (CGO), 2005,
pp. 243–254.

[69] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, and S. S.
Mukherjee, “Software-controlled fault tolerance,” ACM Transactions on
Code Generation and Optimization, vol. 2, pp. 366–396, 2005.

[70] A. Shye, J. Blomstedt, T. Moseley, V. Reddi, and D. Connors, “PLR: A
software approach to transient fault tolerance for multicore architec-
tures,” IEEE Transactions on Dependable and Secure Computing, vol. 6, pp.
135–148, 2009.

[71] T. R. N. Rao, Error Coding for Arithmetic Processors, Orlando, FL: Aca-
demic Press, Inc., 1974.

[72] J. Wakerly, Error Detecting Codes, Self-Checking Circuits and Applications,
New York, NY: Elsevier, 1978.

[73] J. Furuta, K. Kobayashi, and H. Onodera, “Impact of cell distance and
well-contact density on neutron-induced multiple cell upsets,” in Proceed-
ings of the International Reliability Physics Symposium (IRPS), 2013, pp.
6C.3.1–6C.3.4.

[74] K. Zhang, J. Furuta, K. Kobayashi, and H. Onodera, “Dependence of cell
distance and well-contact density on MCU rates by device simulations
and neutron experiments in a 65-nm bulk process,” IEEE Transactions on
Nuclear Science, vol. 61, pp. 1583–1589, 2014.

[75] J. Ahlbin, T. Loveless, D. Ball, B. Bhuva, A. Witulski, L. Massengill, and
M. Gadlage, “Double-pulse-single-event transients in combinational
logic,” in Proceedings of the International Reliability Physics Symposium
(IRPS), 2011, pp. 3C.5.1–3C.5.6.

81

[76] A. Avizienis, G. C. Gilley, F. P. Mathur, D. A. Rennels, J. A. Rohr, and
D. K. Rubin, “The STAR (Self Testing And Repairing) Computer: An
Investigation of the Theory and Practice of Fault-Tolerant Computer
Design,” IEEE Transactions on Computers, vol. C-20, pp. 1312–1321, 1971.

[77] A. Meixner, M. E. Bauer, and D. J. Sorin, “Argus: Low-cost, comprehen-
sive error detection in simple cores,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), 2007, pp. 210–222.

[78] P. Ndai, A. Agarwal, Q. Chen, and K. Roy, “A soft error monitor using
switching current detection,” in Proceedings of the International Confer-
ence on Computer Design (ICCD), 2005, pp. 185–190.

[79] A. Narsale and M. Huang, “Variation-tolerant hierarchical voltage moni-
toring circuit for soft error detection,” in Proceedings of the Symposium
on Quality of Electronic Design (ISQED), 2009, pp. 799–805.

[80] S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D. Bull,
and D. Blaauw, “RazorII: In situ error detection and correction for PVT
and SER tolerance,” IEEE Journal of Solid State Circuits, vol. 44, pp. 32–48,
2009.

[81] J. Tschanz, K. Bowman, S. Walstra, M. Agostinelli, T. Karnik, and V. De,
“Tunable replica circuits and adaptive voltage-frequency techniques for dy-
namic voltage, temperature, and aging variation tolerance,” in Proceedings
of the Symposium on VLSI Circuits, 2009, pp. 112–113.

[82] E. Böhl, T. Lindenkreuz, and R. Stephan, “The fail-stop controller AE11,”
in Proceedings of the International Test Conference (ITC), 1997, pp. 567–577.

[83] Y. Du, S. Chen, and J. Jianjun, “A layout-level approach to evaluate and
mitigate the sensitive areas of multiple SETs in combinational circuits,”
IEEE Transactions on Device and Materials Reliability, vol. 14, pp. 213–219,
2014.

[84] B. Kiddie andW.Robinson, “Alternative standard cell placement strategies
for single-event multiple-transient mitigation,” in Proceedings of the IEEE
Symposium on VLSI (ISVLSI), 2014, pp. 589–594.

82

[85] D. Lardner, “Babbage’s calculating engine,” Edinburgh Review, vol. 59, pp.
263–327, 1834.

[86] S. Mitra and E. McCluskey, “Which concurrent error detection scheme to
choose?” in IEEE International Test Conference (ITC), 2000, pp. 985–994.

[87] M. B. Sullivan and E. E. Swartzlander, Jr., “On separable error detection
for addition,” in Proceedings of the Asilomar Conference on Signals and
Systems, 2013, pp. 2181–2186.

[88] C. Davies, Jr., “Data processing spheres of control,” IBM Systems Journal,
vol. 17, pp. 179–198, 1978.

[89] “Computing Community Consortium (CCC) Visioning study on
cross-layer reliability: System-level, cross-layer cooperation to achieve
predictable systems from unpredictable components.” [Online]. Available:
http://www.relxlayer.org/

[90] Synopsys Inc., “Design Compiler I-2013.12-SP5-2.”

[91] Taiwan SemiconductorManufacturingCompany, “40nmCMOSStandard
Cell Library v120b,” 2009.

[92] S. Iacobovici, “End-to-end residue based protection of an execution
pipeline,” U.S. Patent #7 555 692 B1, 2009. [Online]. Available: http:
//www.google.com/patents/US7555692

[93] ——, “End-to-end residue-based protection of an execution pipeline
that supports floating point operations,” U.S. Patent #7 769 795 B1, 2010.
[Online]. Available: http://www.google.com/patents/US7769795

[94] H. Naeimi, “An end-to-end ECC-based resiliency approach for
microprocessors,” in Proceedings of the Workshop on Silicon Errors
in Logic–System Effects (SELSE), 2011. [Online]. Available: http:
//softerrors.info/selse/images/selse_2011/Papers/selse7_submission_16.pdf

[95] T. R. N. Rao, “Biresidue error-correcting codes for computer arithmetic,”
IEEE Transactions on Computers, vol. C-19, pp. 398–402, 1970.

83

http://www.relxlayer.org/
http://www.google.com/patents/US7555692
http://www.google.com/patents/US7555692
http://www.google.com/patents/US7769795
http://softerrors.info/selse/images/selse_2011/Papers/selse7_submission_16.pdf
http://softerrors.info/selse/images/selse_2011/Papers/selse7_submission_16.pdf

[96] J. L. Massey and O. N. García, “Error-correcting codes in computer arith-
metic,” in Advances in Information Systems Science, New York, NY:
Plenum Press, 1972, pp. 273–326.

[97] J. M. Tahir, S. S. Dlay, R. N. G. Naguib, and O. R. Hinton, “Fault tolerant
arithmetic unit using duplication and residue codes,” Integration, the VLSI
Journal, vol. 18, pp. 187–200, 1995.

[98] E. E. Swartzlander, Jr., “Fault-tolerant arithmetic via time-shared TMR,”
in SPIE’s International Symposium on Optical Science, Engineering, and
Instrumentation, vol. 3807, 1999, pp. 84–92.

[99] T. Ngai, C. He, and E. E.. Swartzlander, Jr., “Enhanced concurrent error
correcting arithmetic unit design using alternating logic,” in Proceedings
of the International Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT), 2001, pp. 78–83.

[100] M. B. Sullivan and E. E. Swartzlander, Jr., “Long residue checking for
adders,” in Proceedings of the Conference on Application-specific Systems,
Architectures and Processors (ASAP), 2012, pp. 177–180.

[101] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs,
2nd ed. New York, NY: Oxford University Press, 2010.

[102] P. Kornerup and D. W. Matula, Finite Precision Number Systems and
Arithmetic, Cambridge, UK: Cambridge University Press, 2010.

[103] J. Cortadella and J. Llaberia, “Evaluation of A+B=K conditions with-
out carry propagation,” IEEE Transactions on Computers, vol. 41, pp.
1484–1488, 1992.

[104] W. L. Lynch and G. R. Lauterbach, “Low-latency memory indexing
method and structure,” U.S. Patent #5 754 819 A, May, 1998. [Online].
Available: http://www.google.com/patents/US5754819

[105] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza, vol. 34,
pp. 349–356, 1965.

84

http://www.google.com/patents/US5754819

[106] M. Yilmaz, A. Meixner, S. Ozev, and D. Sorin, “Lazy error detection
for microprocessor functional units,” in Proceedings of the International
Symposium on Defect and Fault Tolerance in VLSI Systems (DFT), 2007,
pp. 361–369.

[107] M. Alioto and G. Palumbo, “Analysis and comparison on full adder block
in submicron technology,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 10, pp. 806–823, 2002.

[108] Nangate, “Open Cell Library v1.3,” 2009.

[109] P. V.Mohan, Residue Number Systems: Algorithms and Architectures, Nor-
well, MA: Kluwer Academic Publishers, 2002.

[110] A. J.Martin, “Towards an energy complexity of computation,” Information
Processing Letters, vol. 77, pp. 181–187, 2001.

[111] R. Zimmermann, “Binary adder architectures for cell-based VLSI and
their synthesis,” Ph.D. Dissertation, Swiss Federal Institute of Technology
(ETH), 1998.

[112] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE
Transactions on Computers, vol. C-31, pp. 260–264, 1982.

[113] Synopsys Inc., “Designware IP library.” [Online]. Available: http:
//www.synopsys.com/products/designware/

[114] R. Zimmermann, “Efficient VLSI implementation of modulo (2n±1) ad-
dition and multiplication,” in Proceedings of the IEEE Symposium on
Computer Arithmetic, 1999, pp. 158–167.

[115] T. R. Rao and O. Garcia, “Cyclic and multiresidue codes for arithmetic
operations,” IEEE Transactions on InformationTheory, vol. 17, pp. 85–91,
1971.

[116] G. Gaubatz, B. Sunar, and M. G. Karpovsky, “Non-linear residue codes
for robust public-key arithmetic,” in Fault Diagnosis and Tolerance in
Cryptography, Berlin/Heidelberg, Germany: Springer, 2006, no. 4236,
pp. 173–184.

85

http://www.synopsys.com/products/designware/
http://www.synopsys.com/products/designware/

[117] A. H. Syed, “Performance of different multipliers in the De-
signWare building block IP,” Synopsys Inc. [Online]. Available:
http://www.synopsys.com/dw/dwtb.php?a=multiplier_bldg_block

[118] A. Karatsuba, “Multiplication of multidigit numbers on automata,” Soviet
Physics Doklady, vol. 7, pp. 595–596, 1963.

[119] H. L. Garner, “The residue number system,” IEEE Transactions on Elec-
tronic Computers, vol. EC-8, pp. 140–147, 1959.

[120] N. S. Szabó and R. I. Tanaka, Residue Arithmetic and its Applications to
Computer Technology, New York, NY: McGraw-Hill, 1967.

[121] A. Omondi and B. Premkumar, Residue Number Systems, Singapore:
World Scientific, 2007.

[122] C. Efstathiou, N.Moschopoulos, K. Tsoumanis, andK. Pekmestzi, “On the
design of configurable modulo 2n± 1 residue generators,” in Proceedings
of the Euromicro Conference on Digital System Design (DSD), 2012, pp.
50–56.

[123] C. Efstathiou, H. T. Vergos, G.Dimitrakopoulos, andD.Nikolos, “Efficient
diminished-1 modulo 2n+1 multipliers,” IEEE Transactions on Computers,
vol. 54, pp. 491–496, 2005.

[124] B. Parhami, “On equivalences and fair comparisons among residue num-
ber systems with special moduli,” in Proceedings of the Asilomar Confer-
ence on Signals and Systems, 2010, pp. 1690–1694.

[125] W. Freking and K. Parhi, “Low-power FIR digital filters using residue
arithmetic,” in Proceedings of the Asilomar Conference on Signals and
Systems, 1997, pp. 739–743.

[126] P. Ananda Mohan and A. Premkumar, “RNS-to-binary con-
verters for two four-moduli sets

�

2n –1, 2n, 2n +1, 2n+1 –1
	

and
�

2n –1, 2n, 2n +1, 2n+1 +1
	

,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 54, pp. 1245–1254, 2007.

86

http://www.synopsys.com/dw/dwtb.php?a=multiplier_bldg_block

[127] B. Cao, C.-H. Chang, and T. Srikanthan, “A residue-to-binary converter
for a new five-moduli set,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 54, pp. 1041–1049, 2007.

[128] A. S. Molahosseini, C. Dadkhah, and K. Navi, “A new five-moduli set
for efficient hardware implementation of the reverse converter,” IEICE
Electronics Express, vol. 6, pp. 1006–1012, 2009.

[129] B. Parhami, “RNS representations with redundant residues,” in Proceed-
ings of the Asilomar Conference on Signals and Systems, 2001, pp. 1651–1655.

[130] M. Abdallah and A. Skavantzos, “On the binary quadratic residue system
with noncoprime moduli,” IEEE Transactions on Signal Processing, vol. 45,
pp. 2085–2091, 1997.

[131] A. Skavantzos and M. Abdallah, “Implementation issues of the two-level
residue number systemwith pairs of conjugatemoduli,” IEEETransactions
on Signal Processing, vol. 47, pp. 826–838, 1999.

[132] E. E. Swartzlander, Jr. andA.G. Alexopoulos, “The sign/logarithmnumber
system,” IEEE Transactions on Computers, vol. 24, pp. 1238–1242, 1975.

[133] J. N. Mitchell, “Computer multiplication and division using binary loga-
rithms,” IRE Transactions on Electronic Computers, vol. EC-11, pp. 512–517,
1962.

[134] A. S. Fraenkel, “The use of index calculus and Mersenne primes for the
design of a high-speed digital multiplier,” Journal of the ACM, vol. 8, pp.
87–96, 1961.

[135] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2008, pp.
1–70, 2008.

[136] D. Lutz andN. Burgess, “Overcoming double-rounding errors under IEEE
754-2008 using software,” in Proceedings of the Asilomar Conference on
Signals and Systems, 2010, pp. 1399–1401.

[137] D. Goldberg, “What every computer scientist should know about floating-
point arithmetic,” ACM Computing Surveys, vol. 23, pp. 5–48, 1991.

87

[138] J. C. Lo, “Reliable floating-point arithmetic algorithms for Berger encoded
operands,” in Proceedings of the International Conference on Computer
Design (ICCD), 1992, pp. 110–113.

[139] ——, “Reliable floating-point arithmetic algorithms for error-coded
operands,” IEEE Transactions on Computers, vol. 43, pp. 400–412, 1994.

[140] M. Maniatakos, Y. Makris, P. Kudva, and B. Fleischer, “Exponent moni-
toring for low-cost concurrent error detection in FPU control logic,” in
Proceedings of the VLSI Test Symposium (VTS), 2011, pp. 235–240.

[141] L. Leem, H. Cho, J. Bau, Q. Jacobson, and S. Mitra, “ERSA: Error Resilient
System Architecture for Probabilistic Applications,” in Proceedings of
Design, Automation, and Test in Europe (DATE), 2010, pp. 546–558.

[142] P. Eibl, A. Cook, andD. Sorin, “Reduced Precision Checking for a Floating
Point Adder,” in Proceedings of the International Symposium on Defect
and Fault Tolerance in VLSI Systems (DFT), 2009, pp. 145–152.

[143] R. A. Davis, “A checking arithmetic unit,” in Proceedings of the Fall Joint
Computer Conference, 1965, pp. 705–713.

[144] M. Combet, H. Van Zonneveld, and L. Verbeek, “Computation of the
base two logarithm of binary numbers,” IEEE Transactions on Computers,
vol. EC-14, pp. 863–867, 1965.

[145] A. Drozd, R. Al-Azzeh, J. Drozd, and M. Lobachev, “The logarithmic
checking method for on-line testing of computing circuits for processing
of the approximated data,” in Proceedings of the Euromicro Conference on
Digital System Design (DSD), 2004, pp. 416–423.

[146] A. Uhl and J. Becker, “Concurrent error detection in multipliers by using
reduced wordlength multiplication and logarithms,” in Proceedings of the
Euromicro Conference on Digital System Design (DSD), 2013, pp. 129–135.

[147] J. M. Jou and S. R. Kuang, “Design of low-error fixed-width multiplier for
DSP applications,” Electronics Letters, vol. 33, no. 19, pp. 1597–1598, 1997.

88

[148] M. Schulte and E. E. Swartzlander, Jr., “Truncated multiplication with
correction constant [for DSP],” in Proceedings of the Workshop on VLSI
Signal Processing, 1993, pp. 388–396.

[149] S. Kidambi, F. El-Guibaly, and A. Antoniou, “Area-efficient multipliers
for digital signal processing applications,” IEEE Transactions on Circuits
and Systems, vol. 43, pp. 90–95, 1996.

[150] E. King and E. E. Swartzlander, Jr., “Data-dependent truncation scheme
for parallel multipliers,” in Proceedings of the Asilomar Conference on
Signals and Systems, 1997, pp. 1178–1182.

[151] M. de la Guia Solaz and R. Conway, “Comparative study on wordlength
reduction and truncation for low power multipliers,” in Proceedings of the
International Convention on Information and Communication Technology,
Electronics and Microelectronics, 2010, pp. 84–88.

[152] N. Petra, D. De Caro, V. Garofalo, E. Napoli, and A. Strollo, “Truncated
binary multipliers with variable correction and minimum mean square
error,” IEEE Transactions on Circuits and Systems, vol. 57, pp. 1312–1325,
2010.

[153] K. Wires, M. Schulte, and J. Stine, “Variable-correction truncated floating
point multipliers,” in Proceedings of the Asilomar Conference on Signals
and Systems, 2000, pp. 1344–1348.

[154] N. Burgess, “Flagged prefix adder for dual additions,” in Proceedings
of SPIE’s International Symposium on Optical Science, Engineering, and
Instrumentation, 1998, pp. 567–575.

[155] S. Knowles, “Addition circuitry for calculating a sum and the sum plus
one,” United Kingdom Patent #2 342 193 A, 2000.

[156] ——, “Circuitry for performing operations on binary numbers,” U.S.
Patent #6 446 107 B1, 2002.

[157] ——, “Addition Circuitry,” United Kingdom Patent #2 342 193 B, 2003.

89

[158] E. Hall, D. Lynch, and S. Dwyer, “Generation of products and quotients
using approximate binary logarithms for digital filtering applications,”
IEEE Transactions on Computers, vol. C-19, pp. 97–105, 1970.

[159] S. SanGregory, C. Brothers, D. Gallagher, and R. Siferd, “A fast, low-power
logarithm approximation with CMOS VLSI implementation,” in Proceed-
ings of the Midwest Symposium on Circuits and Systems, vol. 1, 1999, pp.
388–391.

[160] K. Abed and R. Siferd, “CMOS VLSI implementation of a low-power loga-
rithmic converter,” IEEE Transactions on Computers, vol. 52, pp. 1421–1433,
2003.

[161] M. B. Sullivan and E. E. Swartzlander, Jr., “Truncated error correction
for flexible approximate multiplication,” in Proceedings of the Asilomar
Conference on Signals and Systems, 2012, pp. 355–359.

[162] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, “Pin: Building Customized Program Anal-
ysis Tools with Dynamic Instrumentation,” in Programming Languages
Design and Implementation (PLDI), 2005, pp. 190–200.

[163] E. Czeck and D. Siewiorek, “Effects of transient gate-level faults on pro-
gram behavior,” in Proceedings of the Symposium on Fault-Tolerant Com-
puting (FTCS), 1990, pp. 236–243.

[164] J. Boue, P. Petillon, and Y. Crouzet, “MEFISTO-L: A VHDL-based fault
injection tool for the experimental assessment of fault tolerance,” in Pro-
ceedings of the Symposium on Fault-Tolerant Computing (FTCS), 1998, pp.
168–173.

[165] A. Bosio and G. Di Natale, “LIFTING: A flexible open-source fault simu-
lator,” in Proceedings of the Asian Test Symposium (ATS), 2008, pp. 35–40.

[166] Z. Kalbarczyk, R. Iyer, G. Ries, J. Patel, M. Lee, and Y. Xiao, “Hierarchical
simulation approach to accurate fault modeling for system dependabil-
ity evaluation,” IEEE Transactions on Software Engineering, vol. 25, pp.
619–632, 1999.

90

[167] W. Chao, F. Zhongchuan, C. Hongsong, and C. Gang, “FSFI: A full system
simulator-based fault injection tool,” in Proceedings of the International
Conference on Instrumentation and Measurement, Computer, Communica-
tion and Control (IMCCC), 2011, pp. 326–329.

[168] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and
Y. Zhou, “Understanding the propagation of hard errors to software and
implications for resilient systemdesign,” inProceedings of the International
Symposium on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2008, pp. 265–276.

[169] M. Kooli, P. Benoit, G. Di Natale, L. Torres, and V. Sieh, “Fault injection
tools based on virtual machines,” in Proceedings of the International Sym-
posium on Reconfigurable and Communication-Centric Systems-on-Chip
(ReCoSoC), 2014, pp. 1–6.

[170] J. Guthoff and V. Sieh, “Combining software-implemented and simulation-
based fault injection into a single fault injection method,” in Proceedings
of the Symposium on Fault-Tolerant Computing (FTCS), 1995, pp. 196–206.

[171] L. Wanner, S. Elmalaki, L. Lai, P. Gupta, and M. Srivastava, “VarEMU:
An emulation testbed for variability-aware software,” in Proceedings of
the International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), 2013, pp. 27:1–27:10.

[172] M. Ebrahimi, A. Mohammadi, A. Ejlali, and S. G. Miremadi, “A fast,
flexible, and easy-to-develop FPGA-based fault injection technique,” Mi-
croelectronics Reliability, vol. 54, pp. 1000–1008, 2014.

[173] Raghuraman Balasubramanian and Karthikeyan Sankaralingam, “Un-
derstanding the impact of gate-level physical reliability effects on whole
program execution,” in Proceedings of the International Symposium on
High Performance Computer Architecture (HPCA), 2014, pp. 60–71.

[174] D. Li, J. S. Vetter, and W. Yu, “Classifying soft error vulnerabilities in
extreme-scale scientific applications using a binary instrumentation tool,”
in Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis (SC), 2012, pp. 57:1–57:11.

91

[175] “The NAS Parallel Benchmarks.” [Online]. Available: http:
//www.nas.nasa.gov/publications/npb.html

[176] “Classical molecular dynamics (CoMD) proxy application,” 2012.
[Online]. Available: http://www.exmatex.org/comd.html

[177] M. A. Heroux and M. Hoemmen, “Fault-tolerant iterative methods via
selective reliability,” Sandia National Laboratories, Tech. Rep., June 2011.

[178] G. Bronevetsky and B. de Supinski, “Soft error vulnerability of iterative lin-
ear algebra methods,” in Proceedings of the International Supercomputing
Conference (ISC), June 2008, pp. 155–164.

[179] M. Shantharam, S. Srinivasmurthy, and P. Raghavan, “Characterizing the
impact of soft errors on iterative methods in scientific computing,” in
Proceedings of the International Supercomputing Conference (ISC), 2011,
pp. 152–161.

[180] Z. Babić, A. Avramović, and P. Bulić, “An iterative logarithmic multiplier,”
Microprocessors and Microsystems, vol. 35, pp. 23–33, 2011.

[181] S.-R. Kuang, K.-Y. Wu, and K.-K. Yu, “Energy-efficient multiple-precision
floating-point multiplier for embedded applications,” Journal of Signal
Processing Systems, vol. 72, pp. 43–55, 2012.

[182] H. Zhang, W. Zhang, and J. Lach, “A low-power accuracy-configurable
floating point multiplier,” in Proceedings of the International Conference
on Computer Design (ICCD), 2014, pp. 48–54.

[183] E. Trichina and R. Korkikyan, “Multi fault laser attacks on protected CRT-
RSA,” in Proceedings of the Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2010, pp. 75–86.

[184] Z. Wang, M. Karpovsky, and A. Joshi, “Secure multipliers resilient to
strong fault-injection attacks using multilinear arithmetic codes,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, pp.
1036–1048, 2012.

92

http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://www.exmatex.org/comd.html

[185] D. Karaklajic, J. Schmidt, and I. Verbauwhede, “Hardware designer’s guide
to fault attacks,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 21, pp. 2295–2306, 2013.

[186] K. Palem, “Energy aware computing through probabilistic switching: a
study of limits,” IEEE Transactions on Computers, vol. 54, pp. 1123–1137,
2005.

[187] M. Neagu, G. Mois, and L. Miclea, “On-line error detection for tuning
dynamic frequency scaling,” in Proceedings of the International Conference
on Automation Quality and Testing Robotics (AQTR), 2012, pp. 290–295.

93

