
On Separable Error Detection for Addition
Michael B. Sullivan
The Cockrell School

of Engineering
The University of Texas at Austin

Austin, TX 78712
Email: mbsullivan@utexas.edu

Earl E. Swartzlander, Jr.
The Cockrell School

of Engineering
The University of Texas at Austin

Austin, TX 78712
Email: eswartzla@aol.com

Abstract—Addition is ubiquitous in computer systems, and
rising error rates make error detection within adders increasingly
important. This paper considers the best way to introduce strong,
non-intrusive error detection to fixed-point addition within an
existing, optimized machine datapath. A flexible family of sep-
arable error detection techniques called carry-propagate/carry-
free (CP/CF) duplication is presented that offer superior error
detection efficiency for a variety of adders.

Index Terms—Adder, duplication, long residue checker (LRC),
residue checking, lazy checker, low-cost error protection, self-
testing and self-checking circuitry, computer arithmetic.

I. INTRODUCTION

Adders are ubiquitous in computer systems, and a wide
and diverse assortment of fixed-point adders are needed for
different purposes. Addition is utilized for data manipulation,
memory addressing, and control flow. Accordingly, the con-
straints on adders vary based on their purpose and the overall
architecture. As such, extensive study has led to a wide variety
of adder designs that vary in speed, area consumption, and
power dissipation [1].

Prior research has investigated low-cost, strong, separable
error detection mechanisms for fast, unpipelined fixed-point
addition [2]. However, no cohesive, low-cost solution exists
to provide separable protection for different fixed-point adder
designs in an arithmetic pipeline. This study presents a flexible
family of separable error detection techniques called carry-
propagate/carry-free (CP/CF) duplication that provide supe-
rior error detection efficiency for a variety of adders.

One observation of this study is that separability only
dictates the separation of designs—a separable error detec-
tor preserves the modularity of the checked adder, and lies
completely off of the critical path of the protected design.
This does not mean, however, that one can select the most
efficient separable error detector irrespective of the design of
the protected adder, as the separable checker with the lowest
overhead depends on the design of the checked adder.

It is desirable that the selection of the most efficient sep-
arable checker be simple—chip designers already deal with
enough complexity without having to consider interactions
between the adder and checker. (After all, modularity is one
of the compelling advantages of separable checkers in the
first place!) With this in mind, the family of separable error
detectors presented by this work is designed to be simple and

parameterized. This simple and parameterized design makes
the selection of the most aggressive separable checker easily
automated or guided by simple heuristics.

The rest of the paper is as follows. Section II reviews some
basic notation and concepts, and surveys the state-of-the-art in
separable error detection for adders. Section III develops a pa-
rameterized family of strong error detection mechanisms that
can adapt to the parameters of an adder design. Section IV-A
draws upon prior literature to develop a set of baseline adders
that represent an efficient design across a variety of time
budgets. Using these baseline adders, Section IV-B evaluates
the efficacy of different separable adder designs, including the
novel family of detectors considered in this study. Matching a
separable error detection mechanism to each adder achieves
superior area and energy efficiency without impacting the
design or timing of the main adder. Findings show that, CP/CF
duplication offers a ∼2–28% decrease in checking circuitry
area and a ∼14–66% reduction in energy consumption relative
to the next most efficient separable mechanism.

II. SEPARABLE ERROR DETECTION

Before describing the main contribution of this paper, some
basic error detection terminology and notation are reviewed.
The current state-of-the-art separable error detectors for addi-
tion are also surveyed.

A. Notation and Error Model

Unless otherwise noted, the two operands for each addition
are denoted A and B, and the output Z. The input word size
of each operation is represented by N . An arithmetic error
occurs when an addition fails to produce the correct result.

It is assumed that an error is caused by a single event
transient (SET) that can propagate to affect one or more
connected components in the adder or checker1. Due to the
separability of every considered scheme, no common-mode
errors can simultaneously affect both the adder and checker.

Unless otherwise noted, the target error coverage of each
scheme is to detect any SET. This coverage represents a strong
level of error protection (akin to the coverage of duplication)
against a single erroneous event.

1This notation is consistent with [3]. In some work, this error model is
referred to as a multiple error [4] or a single distributed fault [5].

Main

Unit

Check

Unit

Checker

A

B
Output

Error?

Fig. 1. The design of a separable error checker.

B. Separability

Systematicity and separability are two important classifying
properties of error detecting codes. An error detecting code
is systematic if the data information bits and check bits
are distinct such that the data can be extracted from the
codeword without first passing through a decoder. A code
is separable if the checking procedure can operate without
any communication from checked unit. By construction, all
separable codes must be systematic.

Separability is a desirable property for an error detection
scheme for several reasons. First and foremost, separable codes
make for modular designs, as shown by Figure 1, and allow
chip designers to implement arithmetic units and checkers
independently. This modularity lessens the design burden
of reliable execution. Also, separable designs can operate
completely off of the critical path (during error-free execution)
and allow pre-existing and highly optimized arithmetic units
to be used without the error detector introducing new design
constraints and unwanted timing effects. For these reasons,
this paper focuses only on separable error detection. Residue
checking has been proven to be the only separable error
code for adders (apart from duplication) [6], which limits
the number of competing designs. The current state-of-the-art
separable error detectors for addition are reviewed below.

C. Duplication

Coarse-grained duplication (also known as dual modular
redundancy [DMR]) is simple, intuitive, strong, separable, and
general, and it may be applied to addition (as shown in Fig-
ure 2a). The area and power costs of duplication generally keep
it from being competitive with code-based approaches for fast
adders. One observation of this study, however, is that careful
duplication is an efficient error detection technique for slow,
pipelined adders. The fact that duplication has advantages in
some parts of the adder design space is utilized in Section III
during the creation of a flexible family of error detectors.

D. Residue Checking

Addition can be checked by testing the equality of Equa-
tion (1), where |N |A=N mod A [6]. If both sides of Equa-
tion (1) are equal, it is likely that no error has occurred. If
they are not equal, then some error has occurred.

|a+ b|A
?
=

∣∣|a|A + |b|A
∣∣
A

(1)

This scheme, shown in Figure 2b, is called residue check-
ing. Residue checking represents an attractive error detection
option for large fixed-point multipliers (the code is also
closed under multiplication) [7], [8]. For addition, however,

Main

Adder

Checker

A

B

Error?

Output

Check

Adder

(a) Duplication

%
Main
Adder

Checker

A

B

Error?
%
Add

Output

(b) Residue Checking

Fig. 2. Arithmetic error detection through duplication and residue checking.
The % unit represents residue generation, and the % adder performs residue
generation and modular arithmetic.

the scheme has some notable drawbacks [2]. First, residue
checking offers incomplete error coverage against SETs, pro-
viding less error detection capability than other separable error
detectors. Also, the generation of a residue following addition
(|Z|A) makes the error detection latency of residue checking
longer than that of other separable schemes. Finally, the area
and power efficiency of residue checking is not competitive
with other error detection approaches for addition.

E. Long Residue Checking and Lazy Checking
While traditional residue checking does not represent an

efficient option for error detection in an adder, an extension
of the scheme is the the state-of-the-art separable error detector
for fast adders [2]. The cost of a modified residue checking de-
sign (shown in Figure 3a) that manipulates the test from Equa-
tion (1) to Equation (2) is inversely proportional to the residue
width, log2 (A). Thus, the modified residue checking design
with the largest possible residue width (log2(A)=n) is the
least complex, most power efficient, has the highest error
coverage, and the lowest latency. Such a design is called the
long residue checker.∣∣ |a|A + |b|A − |c|A

∣∣
A

?
= 0 (2)

Careful inspection shows that the long residue checker can
be implemented by a bit-sliced design (shown in Figure 3b)
using slices composed of a full-adder with complemented
carry-in and an XNOR gate (slice shown in Figure 3c).
Functionally, this is similar to another scheme called the lazy
adder checker [9]; both the LRC and lazy checking are bit-
sliced designs, and the two have an equivalent error coverage
against SETs. Figure 3d shows the bit-slice used by lazy
checking. The LRC has been shown to be more efficient
than lazy checking using standard cell synthesis, with most
efficiency gains due to the ability of long residue checking
to leverage an efficient full adder design while using only
standard library cells [2].

III. A FAMILY OF ERROR DETECTORS FOR ADDITION

While many varied adder designs are in use, no existing
separable mechanism provides the most efficient detection

%
(no CPA)

Main

Adder

Checker

A

B

Error?

MOMA
(no CPA)

Output

2N

2N

(a) Modified Residue Checking

Main

Adder

A

B

Output

Error?
N

Slices

(b) Bit-Sliced SET Checker

FA

A B CI

SCO

A B

Sum

CinCout

Error?

(c) Long Residue Checker

AB Sum

Cin

Cout

10

Error?

(d) Lazy Adder Checker

Fig. 3. The modified residue checking scheme used for long residue checking,
and the bit-sliced design used for both the LRC [2] and the lazy adder
checker [9]. The modified % unit finds the residue in a carry-free format,
and the MOMA unit represents a multi-operand modular adder with no final
carry-propagate adder (such that its output is in a carry-free format). Internals
of a 1-bit slice of each checker are also shown.

of SETs in all adder designs. As an example, long residue
checking is the most efficient known strong error detector
for protecting fast, unpipelined adder designs, but the careful
application of duplication may be the most efficient strong,
separable error detector available for pipelined ripple-carry
adders. This is because both ripple-carry duplication and long
residue checking use the same number of logic cells, but
ripple-carry duplication can overlap some checking with the
main adder if the least-significant result bits are produced first.
This overlapped execution can reduce the number of pipeline
registers that are required for error detection precipitously. Fig-
ure 4 illustrates these savings through the example of a 3-bit
ripple-carry main adder (two-rail checking logic is not shown).

Based on the above observations, this study investigates
a parameterized family of error detectors that combines the
advantages of the long residue checking with those of dupli-
cation. The family is characterized by three parameters: N
(the input width), lw (the logic width of duplication), and
cw (the checking width of duplication). Functionally, the lw
least-significant bits of addition are computed using partial
duplication, with cw of these bits being fully checked before
the main addition completes. In the pipeline stage following
the main addition, the remaining (lw− cw) duplicated-but-
unchecked result bits are equality checked, and the (N−cw)
unduplicated bits are checked via long residue checking. This

FA

FA

FA

FA

FA

FA

XO

XO OR

R

R

R

R

R XO OR

Main

Outputs

Error?Duplicate

and Checker

Main Adder

(a) Ripple-Carry Duplication

FA

FA

FA

R

R

R

R

R

Main

Outputs

Error?

Main Adder

R

R

R

R

FA

FA

FA

XO

XO

XO

OR

OR

LRC Checker

Buffered Inputs

(b) Long Residue Checking

Fig. 4. Ripple-carry duplication and long residue checking for a 3-bit ripple-
carry adder. Cells labeled FA denote full adders, R denote registers, XO denote
XOR gates, and OR denote OR gates. While both ripple-carry duplication and
long residue checking use the same number of logic cells, duplication uses
fewer pipeline registers due to some overlapped execution. For simplicity,
two-rail checking logic is not shown.

scheme is referred to as carry-propagate/carry-free (CP/CF)
duplication owing to the fact that a carry-propagate adder is
used to check the least significant bits of the result while a
carry-free adder is used to check the most-significant bits.

Figure 5 shows a block diagram of CP/CF duplication. It
should be noted that the parameters of CP/CF duplication must
be chosen in a reactive manner in order to stay off of the
critical path and maintain separability. Because of the con-
straint of separability, carry-propagate/carry-free duplication
degenerates to long residue checking for protecting a fast adder
with perfectly balanced outputs but can operate as ripple-carry
duplication for protecting a very slow adder. Figure 4 can
be used to demonstrate this—Figure 4a can be thought of as
CP/CF duplication with (lw=3, cw=2) and Figure 4b as a
design with (lw=0, cw=0). Table I qualitatively summarizes
the properties of carry-propagate/carry-free duplication rela-
tive to other separable error detectors. Designers can tailor the
behavior of CP/CF duplication to match the delay of an adder,
achieving low-cost separable error detection regardless of the
speed and design of the protected circuit.

IV. EVALUATION

The efficiency and flexibility of CP/CF duplication is
demonstrated by protecting a range of adders with different
speeds. Section IV-A describes the experimental methodol-

N-bit

Main

Adder

cw-bit

Check

A

B

Error?

Output

LSB Carry-Propagate

(Duplicate) Checker

PL
Reg

MSB
Input
Reg

Check

Reg

MSB Carry-Free

(LRC) Checker

(N-lw)
LRC
Slices

Check

lw-bit

Adder

N

(N-lw)

(N-lw)

1
Err?

(lw-cw)

Fig. 5. A block diagram of carry-propagate/carry-free duplication. A partial
adder duplicates the lw least-significant bits of addition, cw of which are
checked in the first pipeline stage (in parallel with the main addition). In
the following pipeline stage, the (lw−cw) duplicated-but-unchecked bits are
equality checked, and the (N−cw) unduplicated bits are checked via long
residue checking. The carry-in bit (which is passed through a register to the
LRC checker) is not shown.

TABLE I
SUMMARY OF SEPARABLE ADDER ERROR DETECTORS.

Scheme FAs, XOs, ORs Latches Checking Latency
Ripple-Carry
Duplication N Few Short–Very Long

Long Residue
Checking N Many Short

CP/CF
Duplication N Few Short

ogy used for this study and presents the selected baseline
adders. Section IV-B analyzes the performance of different
separable error detectors in a pipelined design with the dif-
ferent baseline adders and demonstrates the cost savings of
CP/CF duplication.

A. Experimental Methodology

In-house circuits are used for error detection; the baseline
adders mix in-house designs (for flexible addition) with those
from a cell-based arithmetic unit library [10] (for Brent-Kung
addition [11]) and those from the DesignWare library [12]
(for ripple-carry addition). Synthesis is performed using the
Synopsys toolchain, targeting the 40nm TSMC standard cell
library. All baseline adders are compiled with high mapping
and area optimization efforts. Synthesis is performed in a
bottom-up, hierarchical manner such that no changes are made
to the main adder or to the clock period. Energy calculations
rely on gate-level power estimates and assume that the latency
of the main adder dictates the clock frequency. Two-rail
equality checkers are used to generate dual error outputs.

Following the mixed serial/parallel prefix methodology used
for flexible parallel prefix addition [1], five different 32-bit
baseline adders are considered. The adders use slow, ripple-
carry (RC) propagation for the least-significant bits of addition
and Brent-Kung (BK) parallel prefix addition for all remaining

TABLE II
BASELINE ADDERS WITH VARYING DELAY BUDGETS.

Design Delay (ns) Area (µm2) Energy pJ/op
BK-32 0.29 1008 0.64

{BK-24, RC-8} 0.45 842 0.59
{BK-16, RC-16} 0.75 792 0.58
{BK-8, RC-24} 1.01 737 0.56

RC-32 1.21 719 0.56

TABLE III
AREA AND ENERGY COSTS OF THE BASELINES.

Design Area Energy
% Reg % Logic % Reg % Logic

BK-32 39 61 65 35
{BK-24, RC-8} 47 53 71 29
{BK-16, RC-16} 50 50 73 27
{BK-8, RC-24} 54 46 75 25

RC-32 55 45 75 25

bits. Table II gives the delay of each selected baseline, along
with its area and energy demands. It can be seen that adder
costs go down with decreasing speeds, such that an error
detection mechanism must change proportionally in order to be
competitive across all time scales. Table III gives the relative
cost of pipeline registers and logic for each baseline design.
It is apparent that the relative cost of pipeline registers is
inversely proportional to the speed of addition, which indicates
that a pipelining-cognizant approach is needed at slow speeds.

B. Results

The costs of three different separable error detectors are
investigated using the above methodology. Table IV shows
the area and energy required for traditional DMR (as shown
in Figure 2a, with the checker in the pipeline stage following
addition), long residue checking (as shown in Figure 3b,
with the checker in the following pipeline stage2), and carry-
propagate/carry-free duplication. The area and energy cost of
registers, logic, and the total cost (including both registers
and logic) are shown. The design with the lowest total cost is
highlighted in bold.

In addition to the absolute hardware costs of separable error
detection for addition, Table V shows the area and energy
overheads required relative to the cost of each baseline adder.
These data represent the percent area and energy costs required
to protect each baseline design from error.

Traditional duplication uses a constant number of registers,
such that its register costs remain invariant across designs.
Meanwhile, the absolute logic costs of full duplication scale
with the speed (and cost) of the checked adder. As expected,
duplication requires > 100% overhead for logic, because a
duplicate main adder and a two-rail checker are used to detect
an error. The two duplicate adders share the input registers,
and duplication naturally compresses the amount of state that
needs to be propagated to the checker. These two factors
conspire to give duplication modest register costs, resulting

2Prior work describes the LRC for an unpipelined adder [2]. As such, this
pipelining scheme is based upon that used by the lazy adder checker [9].

TABLE IV
THE ABSOLUTE COST OF SEPARABLE ERROR DETECTION FOR AN ADDER.

Duplication

Design Area (µm2) Energy pJ/op
Reg. Log. Tot. Reg. Log. Tot.

BK-32 134 749 883 0.174 0.318 0.492
{BK-24, RC-8} 134 584 718 0.176 0.264 0.440
{BK-16, RC-16} 134 534 668 0.177 0.249 0.426
{BK-8, RC-24} 134 479 613 0.178 0.233 0.410

RC-32 134 461 594 0.180 0.231 0.411
Long Residue Checking

Design Area (µm2) Energy pJ/op
Reg. Log. Tot. Reg. Log. Tot.

BK-32 264 254 518 0.263 0.207 0.471
{BK-24, RC-8} 264 254 518 0.262 0.208 0.470
{BK-16, RC-16} 264 254 518 0.262 0.208 0.470
{BK-8, RC-24} 264 254 518 0.263 0.208 0.471

RC-32 264 254 518 0.262 0.208 0.470
Carry-Propagate/Carry-Free Duplication

Design Area (µm2) Energy pJ/op
Reg. Log. Tot. Reg. Log. Tot.

BK-32 247 260 508 0.246 0.160 0.407
{BK-24, RC-8} 213 269 482 0.206 0.150 0.356
{BK-16, RC-16} 138 302 440 0.136 0.130 0.266
{BK-8, RC-24} 113 281 394 0.110 0.116 0.226

RC-32 49 323 372 0.041 0.097 0.138

TABLE V
THE RELATIVE OVERHEADS OF SEPARABLE ADDER ERROR DETECTION.

Duplication

Design Area (%) Energy (%)
Reg. Log. Tot. Reg. Log. Tot.

BK-32 13.3 74.4 87.7 27.1 49.6 76.7
{BK-24, RC-8} 15.9 69.3 85.2 29.7 44.6 74.3
{BK-16, RC-16} 16.9 67.4 84.3 30.8 43.2 74.0
{BK-8, RC-24} 18.2 65.0 83.1 31.7 41.5 73.2

RC-32 18.6 64.1 82.7 32.0 40.9 73.0
Long Residue Checking

Design Area (%) Energy (%)
Reg. Log. Tot. Reg. Log. Tot.

BK-32 26.2 25.2 51.4 41.0 32.4 73.4
{BK-24, RC-8} 31.3 30.2 61.5 44.4 35.2 79.5
{BK-16, RC-16} 33.3 32.1 65.4 45.5 36.0 81.5
{BK-8, RC-24} 35.8 34.5 70.2 46.9 37.1 84.1

RC-32 36.7 35.3 72.0 46.5 36.9 83.4
Carry-Propagate/Carry-Free Duplication

Design Area (%) Energy (%)
Reg. Log. Tot. Reg. Log. Tot.

BK-32 24.6 25.8 50.4 38.4 25.0 63.4
{BK-24, RC-8} 25.4 31.9 57.3 34.9 25.4 60.2
{BK-16, RC-16} 17.4 38.1 55.5 23.6 22.5 46.1
{BK-8, RC-24} 15.4 38.1 53.5 19.6 20.7 40.2

RC-32 6.82 44.9 51.7 7.31 17.2 24.5

in ∼82–88% area and ∼73–77% total energy overheads. Du-
plication is slightly more efficient for slower adders, because
the relative cost of data movement dominates at slow speeds
(see Table III).

Because of its structure and efficient implementation, long
residue checking uses significantly less logic area than duplica-
tion across all adder designs. However, due to the need to pass
both inputs (and the carry-in bit) to the checker, the register
overhead of the LRC is roughly double that of full duplication.
The low logic and substantial register costs of the LRC add
up to a ∼51–72% total area overhead. The relative cost of

pipeline registers increases with the delay budget, making
the LRC less energy efficient than duplication at protecting
slow adders. Note that long residue checking requires <100%
area overheads to protect ripple-carry addition, despite the fact
that an LRC slice contains a full adder cell. This is because
a DesignWare ripple-carry adder was used as the baseline,
which (at the delay budget used) alternates full adder cells
with more expensive logic in order to increase speed. Long
residue checking requires a constant number of registers and
check slices, such that the absolute cost of the LRC never
changes. Due to the scaling behavior of the baseline adders,
the LRC is relatively more efficient at protecting faster designs.

Carry-propagate/carry-free duplication overlaps some
checking with execution, significantly decreasing the amount
of pipelined state (and therefore register costs) relative
to LRC checking. Meanwhile, the second-stage carry-free
checker decreases the logic costs relative to duplication.
When the costs of both logic and data movement are taken
into account, CP/CF duplication achieves superior area
and energy efficiency across all designs and time budgets.
Carry-propagate/carry-free duplication offers a ∼2–28%
decrease in total checking area and a ∼14–66% reduction in
total checking energy consumption relative to the next most
efficient separable mechanism. Table VI shows the logic
depth and checking depth parameters chosen for the carry-
propagate/carry-free checkers used in Table IV and Table V.
These parameters were determined through an automated
computer search; due to the simplicity and parameterization
of the error detection scheme, the time required for this
search is not prohibitive.

V. DISCUSSION

Carry-propagate/carry-free duplication relies on the least-
significant sum bits to be produced first in order to overlap
some duplication with the main addition. This early production
of the lower result bits is consistent with 2’s complement
addition. However, there are some designs (such as end-
around-carry adders used for 1’s complement addition [13])
that produce perfectly balanced outputs. For these designs,
CP/CF duplication will degenerate to long residue checking.

For simplicity, this study assumes that the CP/CF carry-
propagate (duplicate) adder is implemented using a ripple-
carry adder. While preliminary results indicate that this du-
plicate adder is sufficient for many designs, using a more
general form of carry-propagate duplication (such as one based

TABLE VI
THE CP/CF PARAMETERS USED IN TABLE IV AND TABLE V.

Design
CP/CF Parameters

Logic Width
(lw)

Check Width
(cw)

BK-32 4 2
{BK-24, RC-8} 8 7
{BK-16, RC-16} 18 16
{BK-8, RC-24} 21 19

RC-32 29 28

N-bit
Main
Adder

cw-bit

Check

A

B

Error?

Output

LSB Checker

PL

Reg

Check

Reg

MSB Checker

Check

N

1
Err?

(N-cw)N-bit
Dup.
Adder

Fig. 6. An alternate error detection scheme that employs a split two-rail
checker along with duplication.

on flexible parallel-prefix addition [1]) could give modest
efficiency increases, especially for main adders with arbitrarily
unbalanced outputs. Analysis of CP/CF duplication with a
more flexible and aggressive duplicate adder is left for future
work.

Some of the benefits of CP/CF duplication are due to its
split two-rail checker, which opportunistically checks the least-
significant bits of the duplicate result in parallel with the main
adder. This split result checking can sometimes decrease the
amount of registered state that needs to be propagated to the
next pipeline stage. In addition to its use for CP/CF duplica-
tion, such a split checking scheme can also be employed with
full duplication, as shown by Figure 6. Such a design offers
superior register costs relative to traditional duplication, but
does not reduce the significant costs of fully duplicated logic
(as does CP/CF duplication). Initial experiments indicate that
duplication with split checking operates as expected, providing
a modest improvement over full duplication but failing to
achieve the superior efficiency of CP/CF duplication. For
brevity, a full analysis of duplication with a split checker is
left for future work.

For reasons explained in Section II, traditional residue
checking is not competitive at protecting adders. In some com-
puter organizations, such as in a scalar computer or one that
uses multiply-accumulate operations for both multiplication
and addition, some residue checking circuitry could possibly
be shared between an adder and multiplier without impacting
performance. This paper focuses on the protection of a single
adder and assumes that no protection circuitry can be shared
among different functional units; cost studies under alternative
computer organizations are left as future work.

This study focuses on arithmetic error detection in a gener-
ative context, where operands arrive to the adder in an unen-
coded format (or use a different separable encoding scheme).
An alternative organization is to protect addition in an end-
to-end fashion, where on-chip memory and data movement
are protected by the same error code as addition. Such an
strategy is not considered in this study, as it pushes complexity
to the memory and data movement subsystems (the cost of
which often surpass that of arithmetic in control-intensive
architectures). Also, other operations that do not preserve the

error code suffer an increase in complexity under end-to-end
arithmetic error detection. This diffusion of implementation
costs makes evaluating end-to-end schemes difficult without
fixed knowledge of the microarchitecture in which a protected
adder operates.

VI. CONCLUSION

Strong and efficient separable error detection mechanisms
are needed to ensure reliable addition without prohibitive
design costs. Meanwhile, a plethora of adder designs exist
and the separable checker with the lowest overhead depends
on the design of the checked adder. This study investigates a
flexible family of techniques called carry-propagate/carry-free
(CP/CF) duplication that provide efficient, strong, separable
error detection for a variety of adders. Preliminary results
indicate that CP/CF duplication achieves superior area and
energy efficiency across a multiplicity of designs and time
budgets.

ACKNOWLEDGMENTS

Michael Sullivan’s research was supported by the Temple
Foundation through an MCD Fellowship in Engineering. Earl
Swartzlander is supported in part by a grant from AMD, Inc.
The authors would like to thank Mehmet Başoğlu for helping
to prepare this paper for publication.

REFERENCES

[1] R. Zimmermann, “Binary adder architectures for cell-based VLSI and
their synthesis,” Ph.D. dissertation, Swiss Federal Institute of Technol-
ogy (ETH), 1998.

[2] M. B. Sullivan and E. E. Swartzlander, Jr., “Long residue checking for
adders,” in Proceedings of the International Conference on Application-
specific Systems, Architectures and Processors (ASAP), 2012, pp. 177–
180.

[3] P. Dodd and L. Massengill, “Basic mechanisms and modeling of single-
event upset in digital microelectronics,” IEEE Transactions on Nuclear
Science, vol. 50, no. 3, pp. 583–602, 2003.

[4] D. K. Pradhan, Ed., Fault-tolerant computing: Theory and technique.
Englewood Cliffs, NJ: Prentice Hall, 1986, vol. I.

[5] A. Avizienis, “Arithmetic error codes: cost and effectiveness studies for
application in digital system design,” IEEE Transactions on Computers,
vol. C-20, pp. 1322–1331, 1971.

[6] W. W. Peterson, “On checking an adder,” IBM Journal of Research and
Development, pp. 166–168, 1958.

[7] U. Sparmann and S. Reddy, “On the effectiveness of residue code
checking for parallel two’s complement multipliers,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 4, pp. 227–239,
1996.

[8] M. Yilmaz, D. R. Hower, S. Ozev, and D. J. Sorin, “Self-checking and
self-diagnosing 32-bit microprocessor multiplier,” in Proceedings of the
International Test Conference (ITC), 2006, pp. 1–10.

[9] M. Yilmaz, A. Meixner, S. Ozev, and D. Sorin, “Lazy error detection
for microprocessor functional units,” in IEEE International Symposium
on Defect and Fault-Tolerance in VLSI Systems, 2007, pp. 361–369.

[10] R. Zimmermann, “VHDL library of arithmetic units,” in The
International Forum on Design Languages, 1998, pp. 267–272.
[Online]. Available: http://www.iis.ee.ethz.ch/∼zimmi/arith lib

[11] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE
Transactions on Computers, vol. 100, no. 3, pp. 260–264, 1982.

[12] S. Inc., “Designware IP library.” [Online]. Available: http://www.
synopsys.com/products/designware/

[13] R. Zimmermann, “Efficient VLSI implementation of modulo (2n ± 1)
addition and multiplication,” in The 14th IEEE Symposium on Computer
Arithmetic, 1999, pp. 158–167.

