
Truncated Error Correction for Flexible
Approximate Multiplication

Michael B. Sullivan
School of Electrical and
Computer Engineering

University of Texas at Austin
Austin, Texas 78712

Email: mbsullivan@utexas.edu

Earl E. Swartzlander, Jr.
School of Electrical and
Computer Engineering

University of Texas at Austin
Austin, Texas 78712

Email: eswartzla@aol.com

Abstract—Binary logarithms can be used to perform computer
multiplication through simple addition. Exact logarithmic (and
anti-logarithmic) conversion is prohibitively expensive for use in
general multipliers; however, inexpensive estimate conversions
can be used to perform approximate multiplication. Such ap-
proximate multipliers have been used in domain-specific appli-
cations, but existing designs either offer superior efficiency or
flexibility. This study proposes a flexible approximate multiplier
with improved efficiency. Preliminary analysis indicates that this
design provides up to a 50% efficiency advantage relative to prior
flexible approximate multipliers.

Index Terms—Truncated error correction, approximate binary
logarithms, approximate multiplication, computer arithmetic.

I. INTRODUCTION

Over the past decade, the energy efficiency of computation
has become a primary design constraint. One possible avenue
towards energy efficient arithmetic is to relax the stringent
design requirements of exact computation and instead perform
approximate arithmetic. Approximate arithmetic units have the
potential to save power and latency relative to conventional
arithmetic circuits.

Among approximate arithmetic units, multiplication is par-
ticularly attractive because of the cost and utilization of high-
speed multipliers. Approximate multipliers have successfully
been applied to diverse application areas, including computer
graphics [1], neural networks [2], DSP filtering [3], and
specialized circuitry for nuclear power plants [4].

Multiplication can be performed in the logarithmic domain
with great speed and efficiency. For this reason, approximate
logarithmic conversion is a popular approach for low-cost
approximate multiplication [3], [5], [6], [7].

While various prior approximate logarithmic multipliers
have been investigated, existing designs either offer superior
efficiency or flexibility. Approximate logarithmic multipliers
generally fall into two classes (iterative or non-iterative) that
vary in their flexibility. Non-iterative multipliers compute
using a fixed precision which is set at design-time, providing
superior efficiency but limited runtime flexibility. Iterative
approximate multipliers have the ability to refine results to
an arbitrary precision, at a higher cost per bit of precision.

This paper investigates an iterative approximate multiplier
based on a concept called truncated error correction. Trun-
cated error correction extends prior work on iterative ap-
proximate logarithmic multiplication, resulting in a flexible
approximate multiplier with improved efficiency.

A. Approximate Binary Logarithms for Multiplication

Before describing the main contribution of this paper,
some basic properties and definitions of approximate binary
logarithmic multiplication are reviewed. While high-speed
multiplication is relatively expensive using fixed-point inputs,
binary logarithms can be multiplied as in (1) using simple
and efficient hardware. Therefore, if conversion to and from
logarithmic format were inexpensive then fixed-point numbers
could be efficiently multiplied as in (2).

log2(N1 ∗N2) = log2(N1) + log2(N2) (1)

N1 ∗N2 = log-12 (log2(N1) + log2(N2)) (2)

Conversion between fixed-point binary numbers and exact bi-
nary logarithms is expensive and time consuming, making ex-
act multiplication through logarithmic conversion prohibitively
costly. However, inexpensive approximate conversions exist,
and approximate logarithms can be used to cheaply approxi-
mate fixed-point multiplication. Such approximate logarithmic
multiplication can be expressed by (3), where l̃og2 and l̃og
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denote approximate binary logarithmic conversion and anti-
conversion, respectively.

N1 ∗N2 ≈ l̃og
-1

2

(
l̃og2(N1) + l̃og2(N2)

)
(3)

A W -bit fixed-point input, N , can be expressed as
N = 2k ∗ (1 + f). As a matter of notation, k is referred to
as the characteristic and f is referred to as the fractional
component of N .

II. PRIOR APPROXIMATE LOGARITHMIC MULTIPLIERS

The precision of an approximate multiplier can be set at
design time, or it can be varied according to user needs. Non-
iterative designs compute an approximate result with a fixed
level of precision; iterative approximate multipliers can refine
prior results to satisfy diverse precision needs.
A. Non-Iterative Approximate Multipliers

Non-iterative approximate multipliers seek to approximate
logarithm and anti-logarithm conversion with enough fidelity
for a given application. Precise non-iterative logarithmic ap-
proximation is achieved through piece-wise linear interpo-
lation [3], [4], [8], higher-order interpolation [9], memory
lookup [10], or a combination of methods [6].

The most notable benefit of non-iterative approximate mul-
tipliers is that they can provide a low cost per bit of precision.



However, because the precision of these designs is fixed at
design time, any single static multiplier is likely to only
serve a small number of user needs. In addition, a user with
specific precision needs that do not match up precisely with
an existing non-iterative design will likely have to combine
multiple existing approaches in an ad-hoc manner in order to
design an appropriate approximate multiplier.

B. Iterative Approximate Multipliers

In contrast to static approximate multipliers, iterative ap-
proximate logarithmic multipliers seek to refine a result until
a desired precision is achieved. This level of precision can be
varied at runtime, which may allow an iterative approximate
multiplier to satisfy a diverse range of applications. While
iterative approximate multiplication is flexible, existing de-
signs suffer from a high cost per bit of precision. A review of
existing iterative approximate binary logarithmic multipliers
follows.

The iterative reduction of approximation error has been
recognized since the beginnings of approximate logarithmic
multiplication. The first approximate binary logarithmic mul-
tiplier, proposed by Mitchell over 50 years ago, includes
an iterative scheme for flexibly meeting diverse precision
needs [5]. Mitchell’s scheme introduces a relatively large
maximum relative error of 11.111% per iteration, but can use
multiple iterations to provide any level of precision. Figure 1a
shows a contour plot of the relative error introduced during the
first iteration of Mitchell’s approximation. This relative error
depends only on the fractional component of each input, such
that this error applies to inputs with any positive characteristics
(k1 and k2).

While Mitchell’s scheme supports iterative refinement,
each iteration cannot begin until the previous iteration is
nearly complete, making Mitchell’s iterative refinement a
long-latency operation. Figure 2a shows a block diagram of
Mitchell’s approximation. The components include a leading-
one detector (with some control logic), a binary encoder,
an adder, two shifters, and some masking logic to prepare
the inputs for the next iteration. While this masking logic
completes quickly, the next iteration cannot begin until the
carry-out of the fractional component adder (CO′) is available.

Babić et al. [7] have extended Mitchell’s scheme to allow
greater pipeline-level parallelism. Their design eliminates the
near-serial dependency between successive iterations, improv-
ing the latency required to reach a high level of precision.
However, due to internal simplifications, each stage of their
iterative approximate multiplier is even less accurate than
those of Mitchell’s original algorithm–Babić’s scheme has a
maximum relative error of 25% per iteration. Figure 1b shows
the relative error introduced during the first iteration of Babić’s
approximation, and Figure 2b shows a block diagram of the
scheme. The major advantage of Babić’s approximation is that
successive iterations may begin immediately after leading-
one detection. However, the limited precision per iteration
of Babić’s scheme means that a large number of pipelined
iterations are needed to achieve a reasonable amount of

precision.

III. TRUNCATED ERROR CORRECTION

This work proposes an approximate multiplier that can
efficiently pipeline iterative refinement (similar to [7]) while
also providing high precision per iteration. Truncated error
correction (TEC) places a small amount of error correcting
circuitry along with the arithmetic in each iteration. This
circuitry inexpensively replicates the effects of multiple Babić
pipeline iterations for the most problematic inputs. Truncated
error correction is characterized by two parameters:

1) The truncation region width (t) determines the subset of
inputs to consider for correction.

2) The truncation depth (d) limits the maximum number of
successive Babić iterations to mimic.

Truncated error correction is based on the intuition that
Babić’s approximation suffers the worst approximation error
for inputs whose fractional components approach 1. Handling
these worst-case inputs in one iteration with TEC circuitry
can replicate the maximum-error behavior of multiple Babić
iterations with little added cost. A more in-depth explanation
of the error behavior of truncated error correction is found
below in Section III-A.

Figure 2c shows a block diagram of iterative multiplication
using truncated error correction. Components that change rel-
ative to Babić’s approximation are highlighted. These changes
are described in more detail below in Section III-B.

Anti-ConvertCompute

Anti-Convert

Anti-Convert Accumulate

Stage 1

Stage 2

Stage 3

Convert

Convert

Convert Compute

Compute

(a) Mitchell

Anti-Convert

Anti-Convert

Anti-Convert

Stage 1

Stage 2

Stage 3

Anti-Convert Accumulate Stage 4

Acc.

Convert Compute

Convert Compute

Convert Compute

Convert Compute

(b) Babić
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Fig. 3. An illustration of different pipelined iterative approximate multipliers
with roughly equivalent approximation errors. The time spent in each phase
of computation is approximate; the scale of some phases has been altered for
readability.
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Fig. 1. A comparison of error behaviors between different iterative approximate logarithmic multipliers.
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Fig. 2. Functional diagrams of different iterative approximate logarithmic multipliers.

Figure 3 shows an illustration of different pipelined
iterative multipliers, with pipeline iterations accumulated
through multi-operand addition. The near-serial dependency
in Mitchell’s algorithm increases its latency, and the low
precision per iteration of Babić’s scheme increases its cost.
In contrast, truncated error correction completes in fewer
iterations than either approach while effectively exploiting
pipeline-level parallelism, providing superior efficiency.
A. TEC Error Behavior

The approximation error of Babić’s scheme increases mono-
tonically with the magnitude of the fractional components of
its inputs; the worst approximation errors occur for inputs
whose fractional components both approach 1. Figure 1b il-
lustrates this phenomenon–the highlighted area contains those
inputs where the leading-bit of each fractional input falls
within a truncation region of t = 3 bits (f1 ≥ 0.125 and
f2 ≥ 0.125). Truncated error correction inexpensively mimics
the behavior of multiple Babić iterations for these problematic
inputs–focusing TEC control logic on a small number of
leading bits in the fractional components avoids much of the
overheads associated with multiple full Babić iterations. As
an illustrative example, Figure 1d shows the approximation
error of one TEC iteration that mimics two Babić iterations
for any inputs falling within a truncation window of 3 bits
(t=3 and d=1). The highlighted region is corrected, and has

an approximation error equal to that of the second iteration of
Babić’s scheme (Figure 1c). However, any inputs outside of
the truncation window are not corrected and remain as they
were following the first Babić iteration. While inputs outside
the truncation window remain uncorrected, the maximum
approximation error is equal to that following two full Babić
iterations.

Table I shows the maximum and average relative error of
different truncated error correcting configurations. Because
approximate logarithmic multiplication calculates the charac-
teristic exactly, approximation error is localized to the least-
significant bits of the fractional component. Relative error can
be expressed either as a percentage or as the minimum number
of correct bits in the fractional component of a result. Accord-
ingly, one iteration of Mitchell’s and Babić’s approximation
provide a maximum relative error of 11.111%/3.47 bits and
25%/2 bits, respectively.

It can be seen that in order for a single TEC iteration to
achieve a maximum error equivalent to I iterations of Babić’s
approximation, t and d must be chosen such that t ≥ (I+1)
and d ≥ (I−1). The least costly combinations of t and d
that have a maximum error equivalent to 2, 3, and 4 Babić
iterations are bolded in Table I. One TEC iteration can provide
4 bits of precision (at t=3 and d=1), 6 bits of precision (at
t= 4 and d= 2), or 8 bits of precision (at t= 5 and d= 3).



TABLE I
THE ERROR BEHAVIOR OF TRUNCATED ERROR CORRECTION.

Depth, d Max Err. (%/bits) Width, t Ave. Err. (%/bits)
0 25/2 - 9.28/3.43

1
6.25/4 3 1.36/6.20
6.25/4 4 1.05/6.57
6.25/4 5 0.980/6.67

2
6.25/4 3 0.777/7.01
1.56/6 4 0.304/8.36
1.56/6 5 0.156/9.32

3
6.25/4 3 0.764/7.03
1.56/6 4 0.260/8.59

0.391/8 5 0.086/10.18

Equivalently, the maximum approximation error decreases by a
factor of 4 each time the truncation depth increases by 1 (when
t= (d+2)). Higher-precision TEC iterations are possible, but
are not analyzed in this study.

B. TEC Circuitry

Truncated error correction places additional circuitry in each
pipeline stage. The major components of this circuitry are
briefly described below.

Truncated error correction utilizes specialized fraction pre-
diction logic to obtain the low-cost, low latency prediction of
the top bits of the fractional component.

A shared logic block is used by both the masking logic
and the main datapath. This logic operates on the predicted
fractional components of each input to identify the position of
bit-pairs that fall completely within the truncation region.

The fractional components of any bit-pairs in the truncation
region are passed through shifters before being accumulated
by a multi-operand adder. The maximum distance that each
operand may be shifted depends on the (small) truncation
width, such that fast short-distance shifters made out of
selector-multiplexers suffice for the task. These shifters accept
a one-hot encoded shift amount that is extracted by the
aforementioned shared logic block.

Multi-operand addition is used to accumulate these shifted
operands with the original fractional components; a tree of
(n;2) compressors composed of full adder cells is used for
this accumulation.

Modified masking logic is needed to prepare the inputs of
each iteration for the next stage of pipelined approximation.
This logic masks out the leading-one bit from the current
computation, as well as any bit-pairs that fall completely
within the truncation region.

IV. TRUNCATED ERROR CORRECTION EVALUATION

Truncated error correction complicates the input masking
circuitry, increasing the cost and critical path between pipeline
iterations. TEC circuitry also increases the cost and critical
path of computation through multi-operand addition, shifting,
and arithmetic control logic. However, a pipelined TEC de-
sign requires fewer iterations in order to achieve the same
precision. Using fewer pipeline iterations saves power and
latency, outweighing the added cost and delay of truncated
error correction. The cost, delay, and efficiency of truncated
error correction are analyzed below.

TABLE II
ADDED COST OVERHEAD RELATIVE TO A SINGLE BABIĆ ITERATION.

t / d W Logic (%) Shift (%) MOA (%) Mask (%) Total (%)

3 / 1
32 1.07 33.0 14.7 17.1 72.4
64 0.457 28.7 12.8 15.2 63.0

128 0.200 25.4 11.3 13.6 55.6

4 / 2
32 2.54 95.4 29.3 22.1 164
64 1.09 83.1 25.6 19.8 143

128 0.478 73.4 22.6 17.8 126

5 / 3
32 5.03 187 44.0 27.0 290
64 2.16 163 38.4 24.4 251

128 0.945 144 33.9 21.9 221

A. Methodology

Analyses in this paper make use of a simplified unit gate
model that characterizes each design element according to two
metrics. The first is an abstract concept of cost, denoted by
C, which is assumed to be proportional to both area and
dynamic power consumption. The second is time, T , which
is proportional to the delay of a design element. Each circuit
design is hierarchically decomposed into simple components
in order to analytically characterize its cost and delay. Some
basic assumptions of the unit gate model follow.
• Simple 2-input gates (AND, OR) [C = 1, T = 1]

• 2-input XOR gates, MUXes, and HA cell [C = 2, T = 2]

• Full-adder standard cell [C = 4, T = 4]

• Complex gates (AOI, etc.) composed of 2-input gates
• m-input gates composed of a tree of 2-input gates
The unit gate model does not consider buffering or wiring,

both for simplicity and because synthesis tools add an element
of uncertainty to the cost and delay of these elements. In order
to compensate for added buffering and wiring costs due to
truncated error correction, a conservative 10% cost overhead
is added to the TEC circuitry.

B. Experimental Results

Table II gives the added cost of TEC circuitry1 relative to
the cost of a single iteration of Bulić’s approximation. The
total cost of TEC circuitry is slightly larger than the sum of
each component, due to the correction for wiring and buffering
costs. It is apparent that TEC circuitry is less costly than
the equivalent number of Babić stages (which would incur
100% overhead per stage), and that TEC approximation scales
favorably with the input width (W ).

Table III gives the additional latency incurred by TEC
circuitry relative to the delay of a single iteration of Bulić’s
approximation. Both the path between successive pipeline
iterations (Mask) and the path through an iteration (Output)
are given. The added latency between successive pipeline
iterations is significant, and demonstrates an important area
of future optimization for truncated error correction.

Despite the added cost and latency per TEC iteration due
to correction circuitry, truncated error correction significantly
improves the efficiency of pipelined designs. The reason for
this is twofold. First, as was noted before, the overall cost

1Fractional component prediction is included in the masking logic cost.



TABLE III
ADDED DELAY OVERHEAD RELATIVE TO A SINGLE BABIĆ ITERATION.

t / d W Mask (%) Output (%)

3 / 1
32 167 18.2
64 157 15.4

128 150 13.3

4 / 2
32 233 18.2
64 213 15.4

128 200 13.3

5 / 3
32 350 45.5
64 314 34.6

128 288 26.7

TABLE IV
BENEFITS OF TEC RELATIVE TO PIPELINED BABIĆ APPROXIMATION.

Min. Prec.
(bits) t / d W Cost (%) Delay (%) C*D (%)

4 3/1
32 -30.8 -20.0 -44.6
64 -34.0 -21.1 -48.0
128 -36.6 -21.8 -50.5

8 5/3
32 -16.1 -21.0 -33.7
64 -23.8 -25.5 -43.3
128 -29.8 -29.0 -50.1

10 3/1+4/2
32 -15.0 -4.60 -18.9
64 -20.1 -5.94 -24.9
128 -24.1 -6.96 -29.4

12 4/2+4/2
32 -15.0 -6.45 -20.4
64 -20.9 -8.33 -27.5
128 -25.6 -9.76 -32.9

of TEC circuitry is less than the equivalent number of Babić
stages. Second, TEC designs require fewer stages, which in
turn requires less circuitry to accumulate the results of each
pipeline stage. Table IV shows the cost, delay, and efficiency
(cost-delay product) of a pipelined TEC design relative to
the equivalent Babić approximation. Scalable efficiency gains
up to 50% can be seen due to truncated error correction.
Efficiency is improved in every design, but gains are lowered
to 20-30% in pipelined TEC designs, due to the added latency
between TEC iterations.

V. FUTURE WORK

Preliminary analyses indicate that approximate multiplica-
tion with truncated error correction is more flexible than static
approximation and is more efficient than prior iterative approx-
imate multipliers. More extensive experimentation is needed
to fully understand the benefits of truncated error correction.
Future work will use synthesis-based efficiency estimates and
will compare the precision proportionality of truncated error
correction relative to both static and iterative approaches. Also,
future design space exploration will investigate the behavior
of higher precision TEC iterations and will more fully analyze
the average-case error behavior of competing approaches.

Further design optimizations are possible for the TEC
scheme considered in this work. Cost results in Table II show
that the cost of short-distance shifting prior to multi-operand
addition dominates the TEC overheads. Fast shifters are used
in this study, despite the fact that this computation is off of
the critical path for all but the last pipeline iteration. Future
work will include alternative shifter designs, with an emphasis
on balancing out the delay of pipelined TEC approximation.

Delay optimizations will also be explored for the path between
successive TEC iterations, in order to increase the efficiency
of pipelined designs.

Approximate logarithms can be used to efficiently ap-
proximate operations other than two-operand multiplication.
Future work may extend truncated error correction to re-
lated arithmetic operations, including approximate constant
multiplication, multi-operand multiplication, and approximate
exponentiation2.

VI. CONCLUSION

This work proposes a flexible approximate multiplier based
on a concept called truncated error correction. Initial analyses
indicate that iterative approximate multiplication with trun-
cated error correction provides benefits over all existing ap-
proaches. Iterative approximate multiplication with truncated
error correction provides greater flexibility than static ap-
proximate multiplication, and has latency, cost, and precision
benefits over prior iterative multipliers. The flexibility and ef-
ficiency of truncated error correction may make it an attractive
alternative to fixed-point multiplication for application-specific
designs.
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