
Hybrid Residue Generators for Increased Efficiency

Michael B. Sullivan
School of Electrical and

Computer Engineering

University of Texas at Austin

Austin, Texas 78712

Email: mbsullivan@mail.utexas.edu

Earl E. Swartzlander, Jr.
School of Electrical and

Computer Engineering

University of Texas at Austin

Austin, Texas 78712

Email: eswartzla@aol.com

Abstract—In order for residue checking to effectively protect
computer arithmetic, designers must be able to efficiently com-
pute the residues of the input and output signals of functional
units. Low-cost, single-cycle residue generators can be readily
formed out of two’s complement adders in two ways, which
have area and delay tradeoffs. A residue generator using adder-
incrementers for end-around-carry adders is small but slow, and
a design using carry-select adders is fast, but large. It is shown
that a hybrid combination of both approaches is more efficient
than either.

Index Terms—Residue checking, end-around-carry adder, low-
cost residue generation, hybrid residue generator.

I. INTRODUCTION

Rising soft-error rates in combinational logic make arith-

metic error protection increasingly important [1], [2]. Residue

checking is a popular error coding technique for protecting the

arithmetic datapath in a microprocessor [3], [4]. In order for

residue checking to protect against computer errors, designers

must be able to efficiently compute the residues of the input

and output signals of functional units.

Low-cost, single-cycle residue generators can be formed

by a tree of modular end-around-carry (EAC) adders [5].

While such adders are common in computers which use a

one’s complement or residue-based representation of numbers,

efficient EAC adders may not be well known or available

to designers that use two’s complement arithmetic system-

wide. End-around-carry adders can be readily formed out of

commodity two’s complement adders in multiple ways, which

have area and delay tradeoffs.

This study shows that a low-cost residue generator imple-

mented out of two architecturally distinct EAC adders is more

area efficient than any implementation consisting of a single

constituent adder. Such a residue generator, with multiple types

of EAC adders, is referred to as a hybrid residue generator,

and is the focus of this work.

Section II describes the hybrid residue generator in detail

and illustrates when and why it has the potential to increase

residue generation efficiency. The empirical performance of

the hybrid residue generator is examined in Section III for a

range of system sizes and speeds.

Fig. 1. The low cost residue of an unsigned number, using a tree of end-
around-carry adders. 1 ≡ |214|3 is shown.

A. Low-Cost Residue Codes

Before describing the concept of the hybrid residue gener-

ator, some basic properties and definitions of low-cost residue

codes are reviewed. Often, residue checking relies on a re-

stricted class of residue codes, in the form [2a − 1; a ∈ N], in

order to reduce the circuit complexity of generator circuits [5].

This class of residue codes is commonly referred to as the

low-cost residue codes, because of its relative simplicity of

residue generation. The low-cost residue of an n-bit num-

ber X , |X|2a-1, can be generated by the addition of non-

overlapping a-bit slices of X under modulo-(2a-1) arithmetic.

This procedure is often implemented in a single cycle as a

tree of EAC adders. Figure 1 demonstrates how such a tree of

EAC adders can generate a low-cost residue code.

Efficient low-cost residue generation requires the use of

modular or EAC adders. For a system which uses two’s

complement arithmetic system-wide, this may mean designing

these structures out of binary adders. Simply connecting the

carry-out to the carry-in of a binary adder turns the adder

into an asynchronous sequential circuit, which can suffer from

long and unpredictable race conditions [6]. However, EAC

adders can be formed out of binary adders in other ways,

which vary in their area-delay tradeoffs. Two simple, single-

cycle implementations of EAC addition using binary adders

are shown in Figure 2. The two designs exhibit different area-

delay characteristics: the carry select EAC adder (Figure 2a) is

fast but has replicated logic which adds to its area and power

overheads, and the adder-incrementer (Figure 2b) is small but

has a relatively long critical path.

144978-1-4673-0323-1/11/$26.00 ©2011 IEEE Asilomar 2011

(a) Carry-Select (Fast) (b) Add-Increment (Small)

Fig. 2. Two simple designs for stable single-cycle EAC adders which can
utilize commodity two’s complement adders.

II. HYBRID RESIDUE GENERATORS

The hybrid residue generator (HRG) is a low-cost residue

generator that can combine multiple architecturally distinct

EAC adders in order to increase the total implementation

efficiency. Figure 3 shows an HRG which uses small EAC

adders for all but the last level; such an HRG would be

appropriate for a design subspace with very efficient adder-

incrementer residue generators that cannot completely satisfy

the timing constraints. This study investigates the potential

benefits of dual adder HRGs as a method of architectural

optimization fit for the synthesis of low-cost residue generators

as a part of standard ASIC flow.

Fig. 3. An HRG with one fast adder (F). Small adders (S) are used to
increase efficiency, while the fast adder preserves timing.

VLSI designs suffer from decreasing marginal area ef-

ficiency with diminishing delays as the fundamental speed

limit of a design is approached. This asymptotic behavior

is unavoidable, but effectively optimized circuits can often

result in more efficient behavior for a given time budget [7].

Figure 4 compares the area-delay behavior of residue gen-

erators made out of the two EAC adders chosen for this

study. All synthesized designs are enumerated by a script

under finely varying timing constraints. The small residue

generator requires significantly less area, but asymptotes to

a speed limit sooner. Because of its slower design, there are

time targets which only the faster generator can reach. Also,

there are delays which the small adder can achieve, but only

with enough cost that the fast adder becomes the more efficient

design.

As Figure 4 shows, the small and fast residue generators

are suitable for different target delays. The hybrid residue

generator combines the strengths of the small and fast residue

generators—a properly formed HRG is never less efficient

than either constituent generator, and can outperform either for

Delay, ns

A
re

a,
 u

m
2

300

400

500

600

700

800

900

1.0 1.2 1.4 1.6 1.8 2.0

Adder Type
Small
Fast

Fig. 4. The area required to achieve a given max-delay for a carry-select
(fast) 32-bit residue generator (a = 4), and an adder-incrementer (small) one.
A LOESS curve is shown with a 95% confidence interval to better visualize
trends in the data.

some delays. Formation of the proper hybrid residue generator

for a given time budget entails a search of the HRG space to

select the most efficient design. In general, the best HRG is

similar to the small generator at slower delays, and similar to

the fast one under stricter time limitations.

III. HYBRID RESIDUE GENERATOR EVALUATION

This study analyzes hybrid residue generators with two

types of end-around-carry-adders. All empirical findings were

carried out using the adder configurations in Figure 2, though

the methodology may be applied to other types of EAC adders.

A. Experimental Methodology

The Synopsys DesignWare IP parallel prefix adder is used

as the basic building block in the EAC adders to provide

flexibility across different word lengths and speeds. Parallel

prefix adders can efficiently span the range of area-delay trade-

offs, allowing for design space exploration across a large range

of delays without changing the underlying binary adder [8].

Synthesis is performed using the Synopsys toolchain, target-

ing the 45nm Nangate Open Cell Library [9], [10]. All designs

are compiled using the Synopsys Design Compiler with high

mapping effort and optimization options consistent with an

area-optimized implementation.

The analyses in this study examine the behavior of residue

generation across a spectrum of word sizes, modulo widths,

and delay budgets. The population of synthesized circuits is

studied by repeatedly performing synthesis with finely varying

delay constraints. Analyses use the Pareto frontier of the

generated solution set—only designs with the lowest area and

least delay which satisfy timing are retained. By eliminating

145

TABLE I
MEAN AREA-TIME AND AREA-TIME-SQUARED SAVINGS FROM THE HRG.

16-bit

vs. Fast vs. Slow

Mod Width (a) AT AT 2 AT AT 2

2 -0.151 -0.157 -0.096 -0.142
4 -0.098 -0.226 -0.034 -0.010

32-bit
vs. Fast vs. Slow

Mod Width (a) AT AT 2 AT AT 2

2 -0.098 -0.143 -0.097 -0.024
4 -0.091 -0.213 -0.038 -0.011
8 -0.153 -0.239 -0.012 -0.017

64-bit
vs. Fast vs. Slow

Mod Width (a) AT AT 2 AT AT 2

2 -0.113 -0.117 -0.126 -0.110
4 -0.105 -0.209 -0.048 -0.033
8 -0.154 -0.179 -0.005 -0.021
16 -0.216 -0.338 -0.002 -0.009

128-bit
vs. Fast vs. Small

Mod Width (a) AT AT 2 AT AT 2

2 -0.065 -0.035 -0.247 -0.245
4 -0.127 -0.195 -0.046 -0.025
8 -0.173 -0.214 -0.023 -0.034
16 -0.227 -0.360 -0.003 -0.002
32 -0.283 -0.388 -0.008 -0.017

plateaus of similar, locally sub-optimal designs, the Pareto

frontier spreads analyses over the full, diverse design space.

The most effective HRG for a given time budget is the

most efficient implementation. Figure 5 shows the algorithm

used for forming the HRG frontier; this process was carried

out at all time budgets. The search space of all HRGs is

heuristically pruned using the knowledge that the number of

EAC adders per-level decreases geometrically in a residue

generator. However, the critical path contribution of each level

stays the same. Therefore, the globally most efficient HRG is

likely to be made of small adders towards the input nodes and

fast adders towards the output and levels with mixed adder

designs need not be considered. This results in O(L) possible

HRGs which must be searched at every time step. The fitness

of HRGs is evaluated using Pareto optimality over area and

time; as such, the results of the study are not skewed towards

any specific metric of efficiency.

Input: Tree with FAST EAC Adders

Output: Hybrid Residue Generator

foreach Time Step do
foreach Level L from the Input to Output do

Replace all FAST Adders with SMALL Ones;

Synthesize;
end

end
Retain all Pareto efficient designs;

Fig. 5. The algorithm used for HRG selection.

B. Results

The area-delay efficiency of an HRG relative to the fast and

small residue generators is analyzed using the combined area-

time (AT) and area-time-squared (AT 2) metrics. The mean

AT and AT 2 savings from the hybrid residue generator are

shown in Table I. Comparisons are made using the HRG

designs with achievable delays for each respective residue gen-

erator. The HRG increases the efficiency of residue generation

at all timescales.

In general, the largest efficiency gains due to hybridization

are in the low delay design subspace where the (small) adder-

incrementer cannot form the entire residue generator. This

range of delays is particularly important for designers, as it

is the region where performance-conscious designs are likely

to fall. Figure 6a shows the relative area-delay behavior of

the fast, small, and hybrid 64-bit residue generators (a = 4).

The HRG shows improvement over either uniform design in

the region where the small residue generator asymptotes to its

maximum speed. As the time budget continues to decrease,

the HRG degenerates into a fast residue generator in order to

scale to higher speeds.

In Table I, the performance-centric efficiency gains due to

hybridization can be seen from the efficiency of the HRG

relative to the carry-select adder. The HRG improves AT
efficiency considerably, from 10 to 20% on average. Weighted

efficiency (AT 2) is improved further. This indicates that the

HRG can improve the efficiency of performance oriented

designs without violating timing constraints.

At large word sizes, the cost of residue generation dominates

the overhead of residue checking. Another clear result is that

the hybrid residue generator can scale to large word sizes—the

128-bit HRG shows efficiency improvements akin to those at

smaller word sizes. Although the HRG will not change the

asymptotically linear area of a low-cost residue tree, its ability

to improve efficiency at large word sizes may be especially

important.

While most results are consistent with the hypothesis, there

are some anomalies. HRG efficiency relative to small gen-

erators with large moduli shows little increase; in particular,

there does not seem to be much benefit from hybridization

relative to the small design when a ≥ 8. Although further

analysis remains to be done, the explanation seems to be that

the fast adder is inefficient at large moduli, especially at slower

speeds. The small residue generator (a ≥ 8) is close to the

most efficient design over all of its reachable delays. Figure 6b

shows the 128-bit residue generators with a = 8, where the fast

generator is much less efficient than the small one over almost

all delays. Accordingly, the HRG is only able to make modest

efficiency improvements over the small design. Even so, the

HRG provides notable improvements over either constituent

approach: it gracefully scales to high speeds, offering a single

solution which combines the best aspects of both small and

fast generators.

146

Delay, ns

A
re

a,
 u

m
2

600

800

1000

1200

1400

1600

1800

●

●

1.2 1.4 1.6 1.8 2.0 2.2 2.4

(a) 64-bit (a = 4)

Delay, ns
A

re
a,

 u
m

2

1500

2000

2500

3000

●

2 3 4 5

(b) 128-bit (a = 8)

Delay, ns

A
re

a,
 u

m
2

150

200

250

●

0.6 0.7 0.8 0.9 1.0 1.1 1.2

(c) 16-bit (a = 2)

Delay, ns

A
re

a,
 u

m
2

1000

1200

1400

1600

●

●

●

●

1.2 1.4 1.6 1.8 2.0

(d) 128-bit (a = 2)

Adder Type
Hybrid
Small
Fast

Fig. 6. Hybrid Residue Generator behavior across different word lengths and moduli.

Another notable anomaly from Table I is the lower reduction

in AT and AT 2 for the HRG (a = 2) relative to the fast

design. The 128-bit residue generator, in particular, shows

little improvement due to hybridization. Lessened efficiency

improvement at a = 2 might be problematic, as this is a

common design choice among residue checking implemen-

tations [11], [12]. However, close inspection shows the AT
and AT 2 metrics for a = 2 to be misleading. Figure 6c

and Figure 6d give the behavior of the 16-bit and 128-bit

residue generators (a = 2), respectively. Because of their

deep adder trees with many levels, both the fast and small

residue generators asymptote quickly. The HRG shows only

modest efficiency improvements over the fast generator before

it asymptotes, which is reflected in the tabulated results.

However, with a = 2, the HRG is also able to scale to higher

speeds than either uniform generator, lending additional utility

to the designer. At 16-bits, an HRG with one small level is

able to decrease the critical delay of the faster design by 4%,

and at 128-bits, an HRG with three small levels can operate

13% faster than the fastest uniform design. The 32-bit and

64-bit residue generators show similar results with a modulo

width of 2.
As expected, Pareto efficient HRGs generally resemble

the small residue generator at slower speeds, and the fast

generator at higher speeds. For time targets in between these

extremes, most HRG frontiers show gradual, predictable be-

havior. Figure 7 shows a 16-bit HRG (a = 4), with the number

147

Delay, ns

A
re

a,
 u

m
2

150

200

250

300

350

400

450

222
22222

2
222

2
222

2

1
2
121

1
1

11
0

1
0

0

0.8 1.0 1.2 1.4

Adder Type
Hybrid
Small
Fast

Fig. 7. A 16-bit HRG (a = 4) with the composition of the HRG labeled.

of small levels at each design point labeled. The EAC tree for

this design has two levels, such that any HRG labeled “2” is

the same as the uniform small tree, and “0” is the same as the

uniform fast tree. Any HRG labeled “1” has small adders at

the input and a fast one at the output. The gradual increase in

fast EAC levels is similar across all parts of the HRG design

space, although some subspaces (such as where a = 2) show

greater variability and have fewer uniform HRGs.

IV. CONCLUSION

Because of its nature, the hybrid residue generator will

degenerate to a uniform EAC adder tree if that is the most

efficient choice available. As such, the intelligent application

of hybrid residue generation should never decrease system

efficiency. In addition, results show that the HRG can combine

two different EAC adders to create a design that is more

efficient than any uniform generator. Also, some HRGs can

increase the speed of residue generation, operating at a faster

critical frequency than either the fast or small design.

There exist alternative low-cost residue checking implemen-

tations which may give increased efficiency. An example of

such an approach is the use of carry-save adder networks

for residue generation through multi-operand modular addi-

tion [13]. This study makes no direct comparison to alternative

residue checkers, but shows that the hybrid residue generator

can improve EAC adder tree efficiency with little design effort.

The design of a low-cost residue generator can encompass

more than the two simple EAC adders shown in Figure 2.

Residue checking hardware is a relatively small component

of the entire computer system; accordingly, this study focuses

on EAC adders which minimize design effort. Hybrid residue

generators are useful in this context, because they provide

a mechanism to increase the efficiency of residue checking,

while keeping design overhead low. More complex modular

adder designs exist, which could alternatively be used for

residue generation [14], [15]. These designs are orthogonal to

the concept of an HRG and can be used with hybrid residue

generation if they are available.

Using the algorithm from Figure 5 to generate an HRG

requires O(L) repeated syntheses. More aggressive heuristic

optimization could possibly reduce the search space further

while retaining high accuracy, but this is left for future work.

This study is an initial attempt to analyze the feasibility

and potential benefits of hybrid residue generators. The results

are encouraging and show that simple EAC adders can be

combined to create a generator which is fast, efficient, and

minimizes designer effort. Future work remains to better

understand the underlying mechanisms and limitations of the

HRG, and to extend it beyond the dual adder configuration

considered in this study.

ACKNOWLEDGMENTS

Michael Sullivan’s research was supported by the Depart-

ment of Defense (DoD) through the National Defense Science

& Engineering Graduate Fellowship (NDSEG) Program. Earl

Swartzlander is supported in part by a grant from AMD, Inc.

REFERENCES

[1] T. Karnik and P. Hazucha, “Characterization of soft errors caused
by single event upsets in CMOS processes,” IEEE Transactions on
Dependable and Secure Computing, vol. 1, no. 2, pp. 128–143, 2004.

[2] G. Saggese, A. Vetteth, Z. Kalbarczyk, and I. Ravishankar, “Micropro-
cessor sensitivity to failures: control vs. execution and combinational
vs. sequential logic,” in Proceedings of the International Conference on
Dependable Systems and Networks, 2005, pp. 760–769.

[3] T. Rao, “Error-checking logic for arithmetic-type operations of a proces-
sor,” IEEE Transactions on Computers, vol. C-17, pp. 845–849, 1968.

[4] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs,
2nd ed. Oxford University Press, 2010.

[5] A. Avizienis, “Arithmetic error codes: Cost and effectiveness studies for
application in digital system design,” IEEE Transactions on Computers,
vol. C-20, pp. 1322–1331, 1971.

[6] J. Shedletsky, “Comment on the sequential and indeterminate behavior
of an end-around-carry adder,” IEEE Transactions on Computers, vol.
C-26, pp. 271–272, 1977.

[7] D. M. Markovic, “A power/area optimal approach to VLSI signal pro-
cessing,” Ph.D. dissertation, EECS Department, University of California,
Berkeley, May 2006.

[8] S. Knowles, “A family of adders,” in Proceedings of the 15th IEEE
Symposium on Computer Arithmetic, 2001, pp. 277–281.

[9] Synopsys Inc., “Design Compiler,” 2010.
[10] Nangate, “Open Cell Library v1.3,” 2009.
[11] I. Sayers and D. Kinniment, “Low-cost residue codes and their applica-

tion to self-checking VLSI systems,” IEE Proceedings-E in Computers
and Digital Techniques, vol. 132, pp. 197–202, 1985.

[12] U. Sparmann and S. Reddy, “On the effectiveness of residue code
checking for parallel two’s complement multipliers,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 4, pp. 227–239,
1996.

[13] S. Piestrak, “Design of residue generators and multioperand modular
adders using carry-save adders,” IEEE Transactions on Computers,
vol. 43, pp. 68–77, 1994.

[14] C. Efstathiou, D. Nikolos, and J. Kalamatianos, “Area-time efficient
modulo 2n − 1 adder design,” IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, vol. 41, pp. 463–
467, 1994.

[15] R. Zimmermann, “Efficient VLSI implementation of modulo (2n ± 1)
addition and multiplication,” in Proceedings of the 14th IEEE Sympo-
sium on Computer Arithmetic, 1999, pp. 158–167.

148

