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Abstract—Application execution on safety-critical and high-
performance computer systems must be resilient to transient
errors. As GPUs become more pervasive in such systems, they
must supplement ECC/parity for major storage structures with
reliability techniques that cover more of the GPU hardware logic.
Instruction duplication has been explored for CPU resilience;
however, it has never been studied in the context of GPUs, and it
is unclear whether the performance and design choices it presents
make it a feasible GPU solution. This paper describes a practical
methodology to employ instruction duplication for GPUs and
identifies implementation challenges that can incur high over-
heads (69% on average). It explores GPU-specific software opti-
mizations that trade fine-grained recoverability for performance.
It also proposes simple ISA extensions with limited hardware
changes and area costs to further improve performance, cutting
the runtime overheads by more than half to an average of 30%.

Index Terms—Reliability, Fault tolerance, Redundancy,
Software protection, High performance computing

I. INTRODUCTION

Safety-critical and high-performance computer systems must
be highly reliable despite various sources of hardware errors.
Transient hardware errors from high-energy particle strikes (also
known as soft-errors) are of particular concern due to their risk
of silent data corruption (SDC) [1], [2]. As GPUs become more
pervasive in safety-critical (e.g., autonomous driving systems)
and high-performance computing (HPC) systems, designers
must ensure that the computations that are offloaded to them are
resilient to transient errors. State-of-the-art GPUs employ ECC
or parity protection for major storage structures such as DRAM,
caches, and the register file [3], [4], [5], [6]. However, prior
work indicates that datapath errors originating from unprotected
latches scattered across the processors will contribute signifi-
cantly to the total SDC rate [1], [7]. Without datapath reliability
mechanisms, such systems may not be able to maintain high
reliability at future error rates and system scales.

Traditional hardware-only solutions that duplicate the entire
processor can provide datapath reliability [8], [9]. However,
processor duplication is expensive and excessive for workloads
or sections of code that are inherently resilient. Software-based
redundancy overcomes these issues and can provide the flexibil-
ity of protecting just the vulnerable parts of the program without
incurring the high design, debug, and testing costs attributed to
hardware-only schemes. For GPUs, software-based redundancy
can be introduced at various granularities such as the process,
kernel, thread, and assembly instruction level. Of the four,
only instruction-level duplication can be applied seamlessly to

workloads that produce non-deterministic results at a coarse
granularity (e.g., at the function, GPU kernel, or application
output level) without requiring spare hardware resources to be
reserved solely for redundancy purposes. Higher level dupli-
cation techniques often suffer from limitations in one of these
aspects. We discuss these trade-offs in detail in Section II-B.

In this work, we target software-directed instruction
replication for GPU error detection. Software instruction-level
duplication has been studied extensively for CPUs and has
been shown to provide runtime overheads that are significantly
lower than 100% by exploiting under-utilized hardware
resources (approximately 60% using a 4-way issue super-scalar
processor and 40% for Intel Itanium CPUs) [10], [11],
[12]. Duplication at this level has never been explored for
GPUs. Prior research has shown that many GPU workloads
under-utilize GPU cores [13], [14], indicating potential for
a low-overhead instruction-level duplication solution.

This paper introduces SInRG (pronounced “synergy”),
Software-managed Instruction Replication for GPUs, which is
a family of techniques that optimize software-based instruction
duplication for GPUs. Our work is the first to establish a
practical approach to software-directed instruction duplication
for GPU-based systems, identify GPU-specific opportunities
for overhead reduction, and explore software and hardware
performance optimizations to lower the overheads significantly.

SInRG first implements a commonly-studied CPU instruction
duplication algorithm in NVIDIA’s production compiler and
evaluates it on real GPUs. This algorithm duplicates the
data-flow chains leading to non-duplicated instructions and
maintains two register spaces such that the original and
duplicate instructions operate on the original and shadow
register spaces, respectively [11]. Whenever a non-duplicated
instruction is executed, the source register values are verified,
and a higher layer in the system is notified if verification fails.
Our results show an average runtime overhead of 69%.

Main contributors to the overhead stem from two sources.
(1) Doubling the number of required registers per thread can
adversely affect performance for some workloads because
the register file is a shared resource and its inefficient use
can limit the number of concurrent threads (and performance).
(2) The total number of executed instructions increase with
the introduction of additional verification and notification
instructions. These new instructions also introduce new
dependencies, which can limit the ability to software-pipeline
instructions, further increasing runtime overheads.

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 c©2018 IEEE



SInRG addresses the first issue by employing an instruction
duplication algorithm that trades off the per-thread register
requirement for more verification and notification instructions.
We propose a set of solutions to reduce the overheads caused
by executing verification and notification instructions. (1)
SInRG removes direct dependencies between the verification
and notification instructions, using a per-thread flag to defer
error notification to the end of a thread. It trades off error
containment for performance, which can be mitigated through
a small ISA extension that provides error notification capability
to the verification instructions. (2) We discover that the
verification and deferred notification can be implemented using
just a single, high-throughput assembly instruction supported by
current GPUs. (3) With the aim of eliminating the verification
and notification instructions altogether, SInRG accelerates the
first solution above through hardware support. Some of these
solutions defer error detection until the end of the kernel,
which may affect fine-grain recoverability. The increase in
detection latency is however not a concern for coarse grain
coordinated checkpointing solutions [15], [16], [17], [18].

Results show that SInRG reduces the average runtime
overhead to 36% (1.94x lower than the naı̈ve implementation)
with software-only techniques. Simple hardware extensions
that eliminate verification and notification instructions reduce
the average overhead to 30%. We compare SInRG to a prior
state-of-the-art GPU software-based approach – thread-level
duplication (TLD) [19], [20], [21] – and further optimize
it for comparison. Results show that SInRG is faster than
TLD for a majority of the workloads studied despite it not
needing/utilizing spare thread resources.

We evaluate the error detection capabilities of SInRG by
quantifying the dynamic instruction coverage (counting the
executed instructions that are protected by SInRG). Results
show that on average, 87% of dynamic instructions are covered.
We also conduct architecture-level error injection experiments
to show that SInRG is effective in reducing SDCs. Results
show that the percentage of injected errors that result in SDCs
is always lower than the percentage of uncovered dynamic
instructions. Lastly, we evaluate the effect on the true failure
rate (measured as Failure In Time or FIT, where 1 FIT = 1
failure in 1 billion hours of operation) reduction by conducting
accelerated high-energy particle testing. Results show that
SInRG can reduce the SDC FIT rate by an order of magnitude.

II. RELATED WORK AND CHALLENGES

A. GPU Background

We review basic GPU architecture terminology and the
NVIDIA GPU compilation flow because we implement SInRG
using NVIDIA’s technology. However, the ideas presented in
this paper can be applied to other GPU architectures.

GPU programming models consider thousands of threads
that each execute the same code. Threads are grouped into
32-element vectors called warps to improve efficiency. The
threads in each warp execute in a SIMT (single instruction,
multiple thread) fashion. Many warps are assigned to execute
concurrently on a single GPU streaming multiprocessor (SM).

An SM offers resources that are shared by all the executing
threads, such as the register file and shared memory (or
scratchpad). A GPU consists of many SMs attached to a
memory hierarchy that includes SM-local scratchpad memories,
L1 caches, a shared L2 cache, and multiple DRAM channels.

A user can write parallel programs using high-level
programming languages such as CUDA [22] or OpenCL [23],
and use a front-end compiler to generate intermediate code
in a virtual ISA called parallel thread execution (PTX) [24].
A backend compiler optimizes and translates PTX instructions
into machine code that can run on the device. NVIDIA’s native
ISA is called SASS [25]. The backend compiler can be invoked
in two ways: (1) ahead-of-time compilation of compute kernels
via a PTX assembler (ptxas) or (2) just-in-time compilation
by the GPU driver (if the PTX code is part of the binary).

B. Related Work

Software introduced redundancy: Prior techniques have
introduced redundancy at multiple granularities including
the process, GPU kernel, thread, and assembly instruction
level. Process-level redundancy replicates the process and
compares results at system call boundaries [26], [27]. This
approach suffers from limitations for multi-threaded workloads.
Kernels or thread blocks can be re-executed and their outputs
then compared to ensure correctness [19]. This approach
is challenging for workloads where the kernel or block
outputs are non-deterministic, which can arise from rounding
errors and reading clock values during execution. Thread-level
duplication (TLD) has been employed for CPUs [28], [29], [27],
[30] and GPUs [19], [20], [21] and requires spare hardware
resources. Wadden et al. [20] and Gupta et al. [21] each
proposed a compiler-based approach for GPUs that duplicates
thread-blocks and threads, and observed high overheads for
block-level duplication due to inter-block communication and
synchronization. We quantitatively compare SInRG to TLD
in this paper. One drawback for TLD is that programmer
intervention may be required to ensure spare hardware resources
are available. Intra-warp communication constructs such as
warp vote and shuffle operations, for example, must be handled
accordingly for proper TLD operation.

Software instruction-level duplication does not have these
limitations and has been explored for CPUs [10], [11], [12].
Oh et al. [10] proposed a technique to duplicate instructions at
the assembly level and insert checking instructions to validate
the results. The average runtime overheads were approximately
60% on a 4-way issue superscalar processor. SWIFT [11]
proposed a compiler-based approach and exploited wide,
underutilized processors by scheduling both original and
duplicated instructions in the same execution thread, and
reported overheads of about 40% on Intel Itanium CPUs. The
applicability of such techniques for GPUs has not been studied
previously, and SInRG addresses this gap. To reduce the
overheads further, Shoestring developed a compiler technique
to selectively duplicate instructions by trading off coverage for
performance [31]. Combining such a technique with SInRG
is an interesting future direction.



Hardware introduced redundancy: Traditional business-
class systems (e.g., IBM Z Series machines [8]) employ ex-
pensive hardware-managed dual- or triple-modular redundancy
schemes at prohibitively high cost for commercial use. In safety-
critical systems, similar techniques are being employed to meet
the safety integrity requirements [9]. Recent server and business-
class processors (e.g., IBM System Z machines [32]) adopt
fine-grained hardware checkers to detect errors in individual
processor components, presumably with substantive design
effort. Such an approach has also been explored for GPUs [33].

Warped-DMR and RISE proposed hardware mechanisms
to exploit underutilized parallelism in GPUs for error
detection [7], [34]. Specifically, Warped-DMR uses the idle
SIMT lanes to redundantly execute some of the threads
within the warp and achieve intra-warp DMR execution. RISE
proposed mechanisms to predict and use idle SM cycles and
SIMT lanes to execute redundant work [34]. Warped-RE
extended these approaches and introduced redundancy to verify
every warp instruction [35]. It re-executes the instruction
to correct any detected errors. Each of these techniques
requires complex hardware changes and they are not directly
comparable to SInRG techniques.

C. Challenges with GPU Instruction Duplication

Overheads of an instruction duplication algorithm arise from
the introduction of the three types of instructions: redundant,
verification, and notification instructions. Prior optimizations
target leveraging under-utilized resources and reduce the
number of the added instructions. GPUs, however, present
several new challenges in developing a cost-effective solution.

Limited shared resources: Since SMs provide resources
that are shared among all the executing threads, inefficient per-
thread usage of these shared resources may limit the number
of warps that can simultaneously run on the SM (also known
as warp occupancy). The register file is one such resource;
doubling the per-thread register requirement can limit the warp
occupancy and increase the overall runtime.

Additional dependencies: The verification and notification
instructions added by an instruction duplication algorithm
introduce read-after-write dependencies between themselves,
which may limit ILP and the instruction scheduler’s ability
to pipeline instructions. Such limitations can significantly
increase the runtime overheads if the workload is not capable
of executing enough concurrent threads. Prior research has also
noted the importance of ILP for GPUs [36].

Extra instructions: Verification and notification instructions
increase the dynamic instruction count. Moreover, throughput
offered by the assembly instructions used for them can be low.
For example, compares have half of the maximum throughput
offered by some instructions on NVIDIA GPUs [22], [25].

III. SINRG OVERVIEW

A. Sphere of Replication (SoR)

GPUs used in HPC and safety-critical systems protect major
memory structures such as DRAM, caches, and the register
file using ECC/parity. However, unprotected execution units
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Fig. 1: The GPU hardware structures in the SoR. We focus
on protecting the GPU datapath against transient errors.

and pipeline registers remain susceptible to soft-errors. Since
GPUs are designed to maintain high throughput for arithmetic
intensive workloads, the datapaths constitute a significant frac-
tion of the chip area, unlike CPUs which devote most of their
non-cache logic to instruction delivery and control speculation.

To protect the execution units and pipeline stages, we employ
assembly instruction-level duplication without duplicating
values in memory. We use the term sphere-of-replication
(SoR) to identify at a high-level what is duplicated and which
hardware structures we expect to be protected by this approach.
This technique can detect errors that affect program text
(instructions) and computation (instruction execution). Since
not all instructions are duplicated (e.g., branch instructions
and atomic operations remain unduplicated), the coverage is
high but not complete. We quantify coverage in later sections.

Figure 1 shows the hardware structures that SInRG protects.
Almost all of the SM units used to execute an instruction
(from instruction fetch to write-back) receive protection from
single-event errors. SInRG also delivers additional protection
to some of the structures that are protected by hardware
ECC/parity (e.g., I-cache for all SInRG schemes and register
file for the schemes that duplicate registers). This additional
protection comes for free.

B. Instruction Duplication Algorithms

SInRG duplicates all instructions that (1) produce
deterministic values, (2) do not directly modify the control
flow, and (3) do not write to memory. We call such instructions
duplication eligible.

SInRG performs duplication using two main base algorithms.
The first algorithm, inspired by Reis et al. [11], duplicates all
the instructions in a data-flow chain leading to a non-duplicated
instruction and verifies the values only at the end of the chain.
Duplicated instructions operate on a virtual shadow register
space. For instructions that are not duplication eligible and write
to a register (e.g., atomic operations and special registers), we
copy the result of the original instruction to the shadow register
space to maintain the functionality of shadow execution. We
call this algorithm DRDV, because it doubles the virtual register
space and delays verification until the end of a data-flow chain.

The second base algorithm duplicates all duplication eligible
instructions and places them just before the original instruction.
The duplicated instruction reads the same source registers used
by the original instruction and writes to a new virtual register.
We immediately verify the value in the new register with



the destination register value of the original instruction, and
notify the runtime layer for appropriate event handling if the
verification fails. This scheme adds verification and notification
instructions for every duplication eligible instruction, increasing
the total number of dynamic instructions significantly (and
hence is often ignored by CPU implementations). We call this
algorithm SRIV because it uses a single register space and
immediately verifies each instruction’s result.

C. SInRG Optimizations

This section presents techniques we propose to address the
challenges mentioned in Section II-C. Table I summarizes
the trade-offs offered by these optimizations. Each SInRG
duplication technique is listed with a qualitative comparison of
its attributes (relative to an uninstrumented workload), which
are discussed in more detail below.

Trading off additional dynamic instructions to reduce
register requirements: The DRDV algorithm doubles the
virtual registers required per thread. Running the NVIDIA
compiler’s production-quality register allocator after the in-
struction duplication pass can reduce the real register usage
per thread. Despite this optimization, DRDV often observes
a significant increase in the number of registers used per
thread. For workloads where the register file is a critical
resource, this approach can either reduce the number of threads
that can run in parallel or increase the number of register
spill/fill instructions. The SRIV algorithm naturally provides
an interesting trade-off because it does not alter the original
application’s register requirement by much, but instead executes
more dynamic instructions. This trade-off can benefit some
workloads, especially when the register file is a critical resource,
which we analyze in more detail in Section VI.

Deferring error notification: The code to notify the upper
layers of the system (e.g., a trap instruction and the control flow
instructions to skip the trap in fault-free executions) is typically
added after every verification instruction for error containment.
The added dependency between the two instructions can
contribute significantly to performance overheads, as mentioned
in Section II-C. To reduce the overheads, we investigate
deferring the notification until the end of the function. The
results of all verification instructions are accumulated to
produce a single flag (signature), which is then used by a
single error notification instruction at the end of the function.
Similar approaches have been explored and shown to be
effective in the context of software testing [37], [38], [39].
This optimization drastically reduces the number of error
notifications (and associated control flow instructions) and
enables better instruction scheduling. However, it allows some
erroneous values to propagate to memory before the error is
detected and notified. While this optimization may violate the
error containment assumptions of some recovery schemes, it
works fine for coarse-grain coordinated checkpoint systems
that discard memory values in the event of a detected error to
roll back to a previous checkpoint [15], [16], [17], [18].

Verification and accumulation of the result must be
implemented efficiently for a low overhead solution. This can

TABLE I: Summary of the SInRG techniques
Attributes

3= low, O = medium, 7= high 3= yes, 7= no
Register Error

SInRG # Verification requirement Error Masking
Technique Instructions per thread Containment Potential

D
R

D
V

Base 77 7 3 3
FastSig 3 7 7 3
HW-Notify 3 7 3 3
HW-Sig 33 7 7 7

SR
IV

Base 77 7 3 7
FastSig O 3 7 7
HW-Notify O 3 3 7
HW-Sig 33 3 7 7

Paper Abbreviations:
DRDV: Double register space, delayed verification
SRIV: Single register space, immediate verification
FastSig: Software-only, fast signature-based checking
HW-Notify: Hardware instruction to compare-then-trap
HW-Sig: Signature-based checking in hardware
TLD: Thread Level Duplication [20]
TLD-Sig: TLD [20] with delayed notification using signatures

be accomplished using one or two high-throughput assembly
instructions on current GPUs. This approach also addresses
the third challenge mentioned in Section II-C and explained
in Section IV-C. We call this combined software optimization
FastSig and it applies to both the DRDV and SRIV algorithms.

Eliminating notification instructions: To eliminate explicit
error notification instructions and provide high error contain-
ment, we propose a simple extension to an existing GPU
instruction that is used to compare two values. This extension
raises an exception in hardware if the values mismatch. We
call this technique HW-Notify.

Eliminating verification and notification instructions:
We eliminate the verification and notification instructions by
proposing HW-Sig, which uses the same principles as FastSig
and provides hardware support to maintain the signature register.
This register is initialized at kernel launch time. It is updated
by each of the original duplication-eligible and duplicate
instructions such that it will have the same initialized value
at the end of a fault-free kernel execution. Maintaining one
register per thread can be expensive in GPUs because SMs
support thousands of threads. We overcome this challenge
by maintaining just one signature register per hardware lane,
which would be used by all threads (from different warps) that
execute on the lane. HW-Sig improves performance without
sacrificing error coverage. Since it defers the error notification,
similar to FastSig, the trade-offs are also similar.

We also considered a scheme that extends the ISA such
that each duplicate instruction automatically verifies the result
produced by the original instruction and notifies upper layers
upon failure. The source operands of the original instruction
should not be updated before the duplicate instruction executes,
which introduces new instruction scheduling constraints. As
our evaluation showed lackluster performance, we do not
discuss it further in this paper.

IV. IMPLEMENTATION

A. GPU Compilation Flow

GPU instruction duplication can be implemented at several
places in the compiler tool chain. While performing it early in



the flow before PTX code generation is perhaps easiest to im-
plement, later compiler optimization passes may transform the
program and eliminate the resilience-oriented instructions. In-
serting the replicated and checking instructions directly into the
SASS code ensures tight control over the final program binary,
but requires re-implementation of instruction scheduling and
register allocation which are already in the back-end compiler.

Avoiding these limitations, we implement SInRG within the
back-end compiler (ptxas), applying our transformations on the
intermediate representation there. The duplication algorithm
runs after all back-end optimizations are performed, but before
the instruction scheduling or register allocation passes. This
approach leverages the production-quality instruction scheduler
already implemented in the back-end compiler, which helps to
lower the performance overheads of the duplication and verifi-
cation code. It also enables instruction duplication on programs
for which only the PTX code (rather than the CUDA or OpenCL
source code) is available. Figure 2 summarizes the compilation
flow for NVIDIA GPU programs, including the SInRG instruc-
tion duplication pass. This paper evaluates SInRG using the
ahead-of-time compilation flow, but the just-in-time compiler
can employ the same instruction duplication algorithms.

B. Instruction Duplication Compiler Pass

SInRG duplicates each duplication-eligible instruction
once. Instructions that are not eligible for duplication include
memory writes, control-flow instructions, instructions that
produce non-deterministic values, barrier spill/fill instructions,
and instructions that write to pre-assigned physical registers.
Non-deterministic instructions—those where the replica and
the original instruction can produce different values—include
S2R instructions that read special registers whose values
change over time (e.g., the clock value), atomic operations,
and volatile and non-cached memory reads [25]. A load can
be non-deterministic if there is a data race in the program.
While we would ideally only mark the race-vulnerable loads
as non-deterministic, identifying only this subset of loads
is not feasible. Instead, we conservatively mark all generic,
global, shared, texture, and surface loads as non-deterministic.
We mark local and constant loads as deterministic because
they cannot partake in data races. Local memory offers per
thread storage (which cannot be accessed by other threads) and
constant memory is read-only (and cannot be written to). We do
not apply SInRG passes to built-in CUDA Runtime API calls.

For DRDV, verifying the inputs of a non-duplicated
instruction requires adding a set of verification and notification
instructions, one for each source operand. We implement
an optimization where we insert only one error notification
instruction per non-duplicated instruction (as opposed to one per
source operand) by chaining multiple verification instructions.

For SRIV, we place the duplicate before the original
instruction because the original instruction may overwrite a
source operand, and we want the duplicate to generate the
same result as the original instruction using the same source
operands. We do not duplicate the original move operations
because they naturally duplicate the source register value
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into the destination register. We verify them by comparing
the source and destination registers of the original operation.
Verification and notification consist of a comparison operation,
a conditional branch instruction, and a trap instruction (BPT).

Figures 3(1) and 3(2) show an example of how we duplicate
and verify an add instruction using SRIV. Base verification
includes two additional instructions in the critical path for each
duplicated instruction and creates sequential dependencies
which can affect performance. The branch and trap instructions
also limit the instruction scheduler, which does not efficiently
schedule instructions across trap instructions or basic blocks.
C. SInRG Optimizations

FastSig: This technique accumulates the results of the
verification instructions into a signature register and uses it
at the end of the function for deferred error notification. This
signature (flag) register is initialized to zero at the beginning of
a function. On every register verification, the values produced
by the original and duplicate instructions are added to and
subtracted from the signature register, respectively. If the
signature register is not equal to zero at the end of the function,
an error has occurred.

Using simple add and subtract operations may miss some
errors due to over/under-flow. Instead, we compute bit-wise
difference between the destination registers of the original and
duplicate instructions using XOR, and then OR the result with
the signature register to update it. During a fault-free execution,
the signature register will remain zero. We discovered that
the LOP3 operation supported by the current NVIDIA GPUs
can create any arbitrary logical function using three source
operands and is well suited for the signature accumulation [24],
[25]. Moreover, it offers the highest throughput among all
supported instructions. We maintain a separate predicate
signature register and use the PSETP instruction to perform
a similar accumulation operation in one instruction.

Figure 3(3) shows an example of how this optimization
reduces the number of static verification instructions from
three to one. Furthermore, this optimization allows us to
predicate the verification instructions if the original store
instruction is predicated, providing added benefit. In the base
approach, the verification (ISETP) instruction cannot be
predicated because it must generate a correct predicate register
for the subsequent branch instruction.

Since FastSig relaxes error containment, an error can
propagate to memory and in some cases result in a crash/hang
before the notification instruction is executed. If a function
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has many conditional return instructions, the number of error
notification instructions will also be high, increasing overheads.

HW-Notify: We propose a new branch-free instruction that
compares two values and raises an exception on a mismatch to
provide low-latency error detection with full error containment.
This instruction replaces the signature update operation used
by FastSig and avoids the need to maintain a signature register.
It is similar to a logical (LOP) operation except that it does not
need a destination register. Hardware changes, as summarized
in Figure 4, include instruction decoder support for the new
operation and some logic in the register write-back stage to
raise an exception based on the results of a bit-wise equality
check. Since current GPUs support exception reporting and
handling [40], HW-Notify can leverage this existing framework
for traps. Figure 3(4) illustrates how the instruction is used.

HW-Sig: This technique eliminates all verification and notifi-
cation instructions. As mentioned in Section III-C, maintaining
one register per thread requires significant on-chip storage (10’s
of kB/SM) because an SM supports thousands of threads. We
propose using just one signature register per hardware lane (not
per thread) per context. Since instructions can write to one or
two 32-bit registers, we propose using a 64b signature register.
We initialize the signature register to zero at the kernel launch
time (using a synchronous reset signal) and ensure that it is zero
at the end of the kernel. As each instruction executes, it updates
the signature register by adding or subtracting its destination
register values based on whether the instruction is original or
duplicate, respectively. Operations that are commutative, easy
to design in hardware, and require low area overhead are good
candidates for signature updates. For example, binary Galois
Field arithmetic (GF(2)) that uses XOR operations can be used
for signature accumulation and subtraction [41]. We need one
extra meta-data bit in the instruction to indicate whether the
signature register should be updated by the instruction. When
HW-Sig is employed with SRIV, the duplicate instruction only
updates the signature register; its destination is replaced with

RZ. The signature update logic need not be in the critical path
and can be performed in parallel with the write back stage
while the result of the instruction is being written back to the
register file. Figure 4 summarizes the hardware changes.

At the end of the kernel, we activate the register checking
logic using a global signal. If the value is non-zero, an
exception is raised. This approach trades off the ability to
detect the error until the end of the kernel and diagnose which
thread is corrupted, which is not a concern for existing coarse
grained checkpointing solutions [15], [16], [17], [18].

Storage overhead can be reduced by accumulating the ECC
bits of each result, instead of the result itself. Hence the
signature register only needs to be as wide as the error code
(e.g., 7b SEC-DED is used for the 32b GPU registers [3],
[5]). The signature update can take place in a pipeline stage
following ECC encoding without performance concerns
because this logic is not in the critical path of the datapath.

A hardware error can be missed if (1) both the original and
duplicate instructions see the same corruption in their results,
which is not possible for single instruction error model, or if
(2) a single error propagates to an even number of instructions
in the same thread and these affected instructions update
the signature register such that the observed errors happen
to cancel out. The second scenario is impossible for SRIV
(duplicate instructions do not write to registers), and highly
improbable for DRDV because the conditions are challenging
to meet. The likelihood of this scenario can be reduced by
choosing a signature update function that is less likely to cancel
errors (e.g., one’s complement add as opposed to GF(2) XOR).

V. EVALUATION METHODOLOGY

Our experimental flow targets NVIDIA Pascal (Titan-Xp)
architecture-based GPUs with Compute Capability 6.1 [5].
We modify NVIDIA’s production back-end compiler and use
it with the CUDA 8.0 toolkit. The host system has an Intel
i7-3930K CPU (3.2GHz) and 32GB of system memory. We
evaluate SInRG using 16 workloads, 15 of which are from the
Rodinia benchmark suite (version 3.0) [42]. The last workload
is the matrix multiplication program (referred as mm in this
paper) provided as a sample in the CUDA 8.0 toolkit.

A. Performance Metrics

We measure runtime overheads by running workloads
directly on the system with the GPU. For the application-level
runtime, we take the average time from five consecutive runs



after a warm-up run. We obtain the GPU kernel-level runtime by
analyzing a GPU execution trace that contains the times when
the kernels are launched and their duration. The --print-gpu-
trace option for the nvprof tool prints this trace. We exclude the
time spent copying data between the GPU and host memory.

To understand the source of slowdowns, we collect the total
number of dynamic instructions, number of spill/fills, increase
in register usage per thread, warp occupancy, warp execution
efficiency, and stall reasons using nvprof. We measure the
increase in the binary file size as a secondary overhead metric.

Evaluating the optimizations that require hardware
support: We implement the modifications needed for HW-
Notify and HW-Sig in NVIDIA’s production compiler and
measure the performance overhead using real GPUs. Since
these techniques propose using new ISA extensions that
are not available on current GPUs, we generate instructions
that are closest in term of performance and functionality to
measure expected runtime overheads. For example, we generate
LOP with a dummy destination register (RZ) in place of the
HW-Notify compare-and-trap instruction. For HW-Notify, we
remove the notification instructions and the control-flow to
branch around them. For HW-Sig, we remove all the signature
update instructions such that there are no verification and
notification instructions.

Comparison to Thread-Level Duplication: We quantita-
tively compare SInRG to a prior competitive GPU software-
based solution – thread-level duplication (TLD) [19], [20],
[21]. We implemented a TLD algorithm that is similar to the
Intra-Group-LDS FAST configuration from [20] and the Intra-
Permute configuration from [21], which is the most aggressive
organization that they consider. On every memory write,
TLD communicates the address and value to the neighboring
redundant thread using a SHFL instruction, compares them
with the local values, and notifies higher layers on an error
(where only the redundant thread performs this last task). We
also implemented an optimization called TLD-Sig that defers
the notification until the end of the function using a predicate
signature register (not explored by prior work). A thorough
exploration of TLD optimizations is beyond this papers’s scope.

B. Coverage Metrics

Dynamic instruction coverage: We measure the fraction
of dynamic instructions in a program that are assumed to be
protected by SInRG. We measure this by first categorizing
instructions at compile-time by modifying the back-end com-
piler as follows. (1) All duplication-eligible instructions are
categorized as covered original. (2) All duplicate instructions
are categorized as covered duplicated. (3) We categorize
verification and notification instructions as verification. An
error in these instructions will likely result in a verification
failure, assuming only a single fault occurs during a program
run. (4) Instructions that are not duplicated are categorized as
uncovered. We conservatively mark instructions as uncovered
if we cannot identify an instruction that covers the instruction
following compiler transformations that are performed after the
duplication pass. (5) Remaining instructions, mostly consisting

of register spills and fills, are categorized as others. Since most
of the registers are duplicated in DRDV, a corruption during a
spill or fill will likely be detected by the code that verifies the
register value once it is filled. An error in a spilled register
that is never filled has no consequence.

We next obtain dynamic instruction counts per static
instruction using a binary instrumentation tool, which is similar
to SASSI [43]. Combining this data with the above instruction
categories, we obtain the dynamic instruction coverage. This
metric assumes that all instructions have equal vulnerability.

SDC reduction: We conducted architecture-level error
injections for all of our workloads using a modified version
of the SASSIFI tool [44]. We injected single-bit flips into the
destination registers of randomly selected SASS instructions
(one error per run). This methodology, unlike dynamic in-
struction coverage, accounts for architecture-level propagation.
We observe no error detections during error-free runs, which
confirms that SInRG’s false-positive rate is zero. We calculate
95% confidence intervals using the Wilson score interval and
find that all intervals are less than 5% of the estimated mean. We
modified some of the workloads such that SDC identification
is feasible, which include printing the final result and fixing
the random number generator’s seed for deterministic runs.

We also conducted accelerated high-energy particle beam
experiments to quantify the effect of employing SInRG on
the true SDC rate at the full GPU level. Accelerated particle
beam testing is one of the most accurate and widely-accepted
methods of measuring FIT. We conducted the experiments
at a proton facility with particle energy >200MeV. We used
a Volta-based GPU [4] with ECC enabled and targeted the
entire GPU package. We used our modified back-end compiler
with the CUDA 9.0 toolkit and recompiled the workloads
for Compute Capability 7.0 without any technical challenges,
which demonstrates that SInRG algorithms are portable across
toolkits and applicable to different architectures. Due to the
statistical nature of the experiments and limited availability
of beam time, we studied the FIT rate reduction for only the
matrix multiplication workload. We used two DRDV versions:
one based on the Section IV-B (DRDV) and a second similar
version that duplicates loads using a function-level heuristic.
This heuristic marks all loads as deterministic based on the
non-existence of an atomic operations in the function, which
was appropriate for this workload. These two versions, referred
to in Section VI as DRDV and DRDV with LD dup, respectively,
allow us to understand the effect of not duplicating most loads.

C. Area Costs and Effectiveness Analysis

We implement Verilog models of the structures needed for
HW-Sig to estimate their hardware costs. The circuits are
synthesized with the Synopsys toolchain using a 16nm indus-
trial technology library [45]. We estimate circuit area using a
NAND2 gate-equivalents metric. We conducted gate-level error
injections to evaluate the efficacy of using a SEC-DED accumu-
lator with HW-Sig, as a single error in the pipeline can propa-
gate to many erroneous bits, and the SEC-DED code can alias if
more than three bits are erroneous. We use the Hamartia frame-
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Fig. 5: The runtime overheads of the base DRDV along with optimized software-only FastSig SInRG versions.

work [46] to flip the the output of a single gate or flip-flop per in-
jection. This methodology is similar to that of Nedel et al. [47],
though we use netlist rewriting to simulate errors without mod-
ifying the gate-level simulator. Our results are based on six un-
pipelined DesignWare components [48], using random inputs.

VI. SINRG EVALUATION
A. Software-only techniques

Performance: We begin our evaluation by measuring the
performance overheads of the baseline SInRG versions. As
the baseline SRIV incurs very high overheads (>100% for
all our workloads), we do not analyze it further. The GPU
kernel runtime for DRDV incurs an arithmetic average overhead
of 69%, as shown in Figure 5. Employing the software-only
FastSig optimization reduces the average runtime overheads to
39% and 49% for DRDV and SRIV, respectively. Workloads
with low baseline IPC have more potential for improvement
when employing SInRG. Underutilized resources (due to
memory operations, hazards, poor code, etc.) can cause low
IPC, which SInRG exploits by hiding duplication overhead.
To understand the effect of SInRG’s runtime overheads on
different architectures, we evaluated FastSig-DRDV on a Volta-
based GPU for a subset of workloads and observed similar
overhead trends.

Our results show that the average application-level runtime
overheads are only 6%, 4%, and 5% for baseline DRDV,
FastSig-DRDV, and FastSig-SRIV, respectively. This is much
lower than the GPU kernel-level overheads because these
runtimes include time spent on host and copying memory.

FastSig-DRDV outperforms FastSig-SRIV for some work-
loads, such as lud (18% versus 59% overhead). This phe-
nomenon can be explained by the difference in dynamic instruc-
tion count, which is 33% higher for FastSig-SRIV. FastSig-
SRIV has better performance for some workloads, despite
executing more dynamic instructions. For example, the runtime
overheads for b+tree are 32% versus 6% for FastSig-DRDV
and FastSig-SRIV, respectively. Although the SRIV version
executes more dynamic instructions, the warp occupancy is
1.82× higher, resulting in better overall performance.

Figure 6 further explains the dynamic instruction count
increase. The results are normalized per workload to the
total instruction count of FastSig-DRDV and show that
FastSig-SRIV always executes more instructions than FastSig-
DRDV. As discussed above, this is not the only indicator of

performance. Warp occupancy, which is also plotted in Figure 6
on the secondary axis, is almost always reduced by using
FastSig-DRDV. This relative decrease correlates well with
the relative runtime overhead increase (Figure 5) compared to
FastSig-SRIV. In summary, selecting an instruction duplication
algorithm that is aware of the GPU resource requirements for
a workload can provide better performance.

Comparison to thread-level duplication: If a workload
has spare thread and register resources, it can benefit from
TLD beyond what SInRG offers because SInRG does not
exploit spare thread resources. This is the case for lavaMD and
leukocyte, as shown in Figure 5. These workloads exhibit low
warp occupancy (Figure 6) for both FastSig versions, since
they are not register resource limited.

As mentioned in Section V-A, TLD-Sig optimizes TLD by
deferring error notification until the end of the function, which
reduces the runtime overheads for most of the workloads.
Results show that despite this optimization, one of the FastSig
optimized SInRG versions outperforms TLD-Sig for a majority
of the workloads.

Code bloat: The average increase in the program binary file
size, which includes non-duplicated host code, was a modest
12% for FastSig-DRDV and 19% for FastSig-SRIV. SInRG’s
static instruction overhead ranges from 74%–115% for FastSig-
DRDV and from 180%–227% for FastSig-SRIV. The overheads
for FastSig-SRIV are relatively higher because it adds more
verification instructions.

Dynamic instruction coverage: Results in Figure 6 show
that the original programmer-defined instructions (other than
compiler-inserted spill and fill code) account for an average
of 36% and 25% of the total dynamic instructions for
FastSig-DRDV and FastSig-SRIV, respectively. The duplicated
instructions account for a similar fraction. The percentage
of verification instructions varies significantly based on the
workload and the algorithm. As expected, the average per-
centage is 2.4× more for FastSig-SRIV compared to FastSig-
DRDV (35% versus 15%). While a small fraction of instructions
are categorized as others for most workloads, spills and fills
increase the prevalence of this instruction class for some register
constrained workloads. We assume all the above instructions
are covered by SInRG. Finally, the fraction of uncovered
instructions also varies by workload and depends on the
prevalence of control, global and shared memory reads, and
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Fig. 7: Architecture-level error injection results. Original refers to uninstrumented program.
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Fig. 8: SDC and DUE FIT rates for the mm workload,
normalized to the original mm. Architectural injection and
instruction coverage results are plotted on the secondary y-axis.

atomics in the program. On average 88% and 87% of the
dynamic instructions are considered covered by FastSig-SRIV
and FastSig-DRDV, respectively.

SDC reduction through architecture-level error injec-
tions: Figure 7 shows architecture-level error injection results
for the uninstrumented programs and the two SInRG versions. It
shows that SInRG is effective in reducing the SDC percentage.
We expect the dynamic instruction coverage, plotted on the
secondary y-axis, to correlate well with FastSig-SRIV’s DUE
(Detected Unrecoverable Errors [49]) percentage because
FastSig-SRIV performs immediate verification, providing no
opportunity for error masking. Since the error notification

is delayed, some of the errors may result in DUE-other
(crashes/hangs) prior to being flagged by SInRG as DUE-
SInRG (e.g., b+tree, lud). FastSig-DRDV provides opportunity
for masking until the end of the data-flow chains, lowering
the expected DUE rate. The results clearly show this trend —
the SDC percentage is always lower than the percentage of
uncovered instructions.

SDC reduction through accelerated particle testing: Fig-
ure 8a shows the effectiveness of SInRG in reducing the GPU
SDC FIT rate while running the mm workload. The observed
SDC rate for both SInRG versions is an order of magnitude
lower than the uninstrumented program. Figure 8b shows that
the DUE FIT rate increases with SInRG; we observed the
evidence of several SInRG error detections in the system logs.
These results establish that SInRG is effective in significantly
improving the reliability of GPUs.

We plot the dynamic instruction coverage and architecture-
level error injection results in Figure 8 (on the secondary
y-axes) to analyze the trends. These results, however, cannot
be directly compared to FIT rates because these methods
estimate the program-level error propagation probabilities once
the error has manifested at the architecture level.

Figure 8a shows that the percentage of uncovered
dynamic instructions reduces from 100% to 29% and 3% for
DRDV without and with load duplication, respectively. The
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Fig. 9: Runtime overheads for the hardware-based schemes.

corresponding SDC percentage reduction from architecture-
level error injection are 18% and 0%, down from 72%. These
trends correlate strongly with each other and the FIT estimates.
We noted similar strong correlations for the DUE results.

B. Optimizations through Hardware Support

Performance: We apply HW-Notify to the two FastSig
versions to overcome their limitation and provide perfect
error containment. Figure 9 shows the average overheads for
HW-Notify-DRDV and HW-Notify-SRIV are 37% and 46%,
respectively, which are similar to the FastSig versions.

HW-Sig eliminates the verification instructions altogether
providing a faster solution. HW-Sig-SRIV is significantly faster
than the HW-Notify-SRIV, with average overheads of 33%
versus 44%. This improvement is expected because FastSig-
SRIV has many verification instructions that HW-Sig eliminates.
We did not observe such a high improvement for HW-Sig-
DRDV over HW-Notify-DRDV (35% to 33%). Even though the
average overheads between HW-Sig-SRIV and HW-Sig-DRDV
are similar, we observe significant differences for different
workloads. When HW-Sig is employed with DRDV, maintain-
ing the shadow data-flow chain and the shadow register space
provides additional instruction scheduling flexibility, which can
be beneficial for workloads that are not register limited.

Hardware costs: Table II gives the circuit area estimates
following synthesis, as well as a 32b adder and a SEC-DED
encoder for reference. The HW-based SInRG schemes require
modest amounts of new hardware per lane—the total area of
the new structures is similar to or less than that of an adder,
which itself represents a small fraction of the pipeline logic.
The 64b HW-Sig accumulator is shown with two signature
accumulation algorithms—GF(2) XOR and one’s complement.
The HW-Sig accumulator is the largest new structure, but it
can be efficiently replaced by a SEC-DED accumulator at less
than 1/6 (GF(2) XOR) or 1/8 (one’s complement) the cost.

The SEC-DED accumulator potentially has imperfect error
coverage because a single-event transient error in the pipeline
can propagate to many erroneous bits, and the SEC-DED code
can alias if more than three bits are in error. Our gate-level error
injection campaign determined this risk to be minimal—over
3,862 logically unmasked errors injected into six fixed-point
and floating-point arithmetic units, only one would remain
uncaught by the SEC-DED accumulator. This leads to a 95%
confidence interval of (0.0%, 0.2%) for the percentage of
errors that the SEC-DED accumulator would miss.

TABLE II: Area costs per lane for hardware extensions.
Structure Technique # FFs Area (NAND2)

32b Zero Detector HW-Notify 1 19
64b XOR Accumulator HW-Sig 65 496
64b One’s Accumulator HW-Sig 65 1044

7b SEC-DED XOR Accumulator HW-Sig 8 73
7b SEC-DED One’s Accumulator HW-Sig 8 130

32b Adder Reference 96 715
2x 32b SEC-DED Encoders Reference 14 354

We target a 2GHz clock (assuming 50% margin for
uncertainty and unmodeled control circuitry), which is an
efficient operating point for more complex functional units
such as the multiply-add unit. All of the considered circuits
achieve this speed using automatic register retiming.

VII. AUTOMATED DUPLICATION TECHNIQUE SELECTION

As explained earlier, either DRDV or SRIV can perform
best for a specific GPU kernel, depending on its requirements
and the available GPU resources. We explore heuristics to
automatically select the SInRG algorithm for each dynamic
kernel at kernel launch time. Based on our initial study, we
find that supervised learning methods such as Decision Tree
and Random Forest perform well for this task. Auto-selected
duplication algorithm for FastSig, HW-Notify, and HW-Sig
reduces the average runtime overheads to 36%, 34%, and 30%,
respectively. These are significantly lower when compared
to the average overheads obtained by DRDV and SRIV
individually for the respective techniques.

VIII. CONCLUSIONS

As GPUs pervade HPC and safety-critical systems, it
becomes important to ensure that the application which are
accelerated are resilient to transient hardware errors. Software-
based instruction duplication is attractive because it can be
employed on state-of-the-art systems and can be selectively
applied to resilience-critical workloads. In this paper, we
implement intra-thread instruction duplication on GPUs
(inspired by prior CPU work) and find the overheads to be
high, averaging 69% over a variety of workloads. We propose
several software-only and software-hardware optimizations
to reduce the overheads and implement them in NVIDIA’s
production compiler. Our GPU-specific software optimizations
trade off error containment for performance and reduce the
average runtime overhead to 36%. We also propose new ISA
extensions with limited hardware changes and area costs to
further lower the average runtime overhead to just 30%.
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APPENDIX

ARTIFACT DESCRIPTION:
INSTRUCTION LEVEL DUPLICATION ALGORITHMS

A. Abstract

This section contains the details of implementing instruction
level duplication in the backend compiler.

B. Overview

The following terminology is used in the algorithms:
• Duplication eligible instructions, which are instructions

that (1) produce deterministic values, (2) do not directly
modify the control flow, and (3) do not write to memory.

• Copy eligible instructions are instructions that are not
duplication eligible and write to a register, such as atomic
operations and special registers.

The SInRG algorithms operate at the intermediate representa-
tion (IR) in ptxas, which is close to SASS assembly code. Since
SInRG algorithms run before register allocation, they operate
on virtual registers and can easily create new (shadow) registers
which are later mapped to the limited set of physical registers.

In SInRG, we duplicate every duplication-eligible instruction,
using a data-structure to track already-protected instructions
so as not to duplicate them multiple times. We then create
the data structure to track the shadow register mapping.
In our implementation, we duplicate all major register
classes—general-purpose registers, predicate registers, and
condition codes—except for the predefined registers such
as zero-value register and thread-id. Next, for each original
duplication-eligible instruction, we duplicate the instruction
and map the duplicate into the shadow register space.

Instructions that are not eligible for duplication include
memory writes, control flow instructions, instructions that
produce non-deterministic values, barrier spill/fill instructions,
and instructions that write to pre-assigned physical

registers. We also do not apply the pass to built-in CUDA
Runtime API calls such as cudaDeviceGetCacheConfig and
cudaDeviceSetCacheConfig, which get and set the preferred
cache configuration for the current device, respectively.

C. DRDV: Double the virtual Register space and Delay
Verification

For DRDV, we place the duplicate instruction after the
original instruction and map the registers used by it into a
shadow register space. For all non-duplicated copy eligible
instructions, we insert a move instruction to copy the
destination register value into the shadow register space so that
duplicated instructions can use it. Finally, we insert verification
instructions to check original and shadow register values
for all inputs to non-duplicated instructions. This approach
reduces the verification overhead (compared to SRIV) by
chaining multiple replicated instructions on the path to a
single verification. Algorithm 1 describes our implementation
of the DRDV instruction duplication algorithm.

Algorithm 1: The DRDV back-end compiler instruction
duplication algorithm, run once per function.

1 create list of original instructions
2 clear original to shadow register mapping
3 for each instruction in the function do
4 if instruction is duplication-eligible and original then
5 duplicate the original instruction
6 for all operands in the duplicate instruction do
7 if shadow register does not exist then
8 create a shadow register for the source
9 end

10 replace original register to shadow register
11 end
12 else if instruction is copy eligible and original then
13 insert a move instruction to copy the

destination register value to the shadow space
14 end
15 end
16 for each instruction in the function do
17 if instruction is not duplication eligible and is original then
18 for all sources in this instruction do
19 verify original

and shadow registers have same value
20 if values are different then
21 notify error to higher level (trap)
22 end
23 end
24 end

D. SRIV: Single Register space and Immediate Verification

For SRIV, we replace the destination registers in the
duplicate instruction with new virtual registers. Since the
original instruction may overwrite its source operand and we
want the duplicate instruction to generate the same result as
the original instruction using the same source operands, we
place the duplicate before the original instruction. Next, we
insert verification instructions to check the original and new
register values after the original instruction. Verification and
notification consist of a comparison operation, a conditional



branch instruction, and a trap instruction (BPT) to notify
an outer layer of an error. Algorithm 2 describes our
implementation of the SRIV instruction duplication algorithm.

Algorithm 2: SRIV back-end compiler instruction
duplication algorithm, run on each function.

1 create list of original instructions
2 for each instruction in the function do
3 if instruction is duplication eligible and original then
4 duplicate and place it before the original instruction
5 for all

destination registers in the duplicate instruction do
6 replace

original register with a new virtual register
7 verify the

original and new registers have same value
8 if values are different then
9 notify error to higher level (trap)

10 end
11 end
12 end

E. FastSig: Signature-based checking

The implementation of both FastSig versions for DRDV
and SRIV extend from the base algorithms above, with a few
important additions. First, the signature register needs to be set
to an initial value at the start of the function. Second, during
the verification step, an LOP3 (or any high-throughput update
function) is used instead of a comparison operation. Third, error

notification is no longer done during the inner-most loop —
instead, it is deferred to the end of the function. Finally, the
signature register value is checked at the end of the function
against the initial value it was set to, and a trap is triggered if
the values do not match. Figure 3 in the paper illustrate how
the assembly code may look after the FastSig implementation.

F. HW-Sig Implementation Details

For HW-Sig, we first initialize a 64-bit signature register at
kernel launch time, and at the end check to see if the value is
zero. As each instruction executes, it updates the signature regis-
ter by adding or subtracting its destination register values based
on whether the instruction is original or duplicate, respectively.
Operations that are commutative, easy to design in hardware,
and require low area overhead are good candidates for signature
updates. For example, binary Galois Field arithmetic (GF(2))
that uses XOR operations or one’s complement accumulation or
subtraction operations can be used for signature accumulation
and subtraction [41]. We need one extra meta-data bit in the
instruction to indicate whether the signature register should be
updated by the results of the instruction. Instructions that are not
duplicated do not update the signature. We need one more meta-
data bit if accumulation and subtraction operations are different
(e.g., one’s complement arithmetic). The signature update logic
need not be in the critical path and can be performed in parallel
in the write back stage as the result of the instruction is being
written back to the register file.


