
Understanding Error Propagation in Deep
Learning Neural Network (DNN) Accelerators and Applications

Guanpeng Li

University of British Columbia

gpli@ece.ubc.ca

Siva Kumar Sastry Hari

NVIDIA

shari@nvidia.com

Michael Sullivan

NVIDIA

misullivan@nvidia.com

Timothy Tsai

NVIDIA

timothyt@nvidia.com

Karthik Pattabiraman

University of British Columbia

karthikp@ece.ubc.ca

Joel Emer

NVIDIA

jemer@nvidia.com

Stephen W. Keckler

NVIDIA

skeckler@nvidia.com

ABSTRACT

Deep learning neural networks (DNNs) have been successful in

solving a wide range of machine learning problems. Specialized

hardware accelerators have been proposed to accelerate the execu-

tion of DNN algorithms for high-performance and energy efficiency.

Recently, they have been deployed in datacenters (potentially for

business-critical or industrial applications) and safety-critical sys-

tems such as self-driving cars. Soft errors caused by high-energy

particles have been increasing in hardware systems, and these can

lead to catastrophic failures in DNN systems. Traditional methods

for building resilient systems, e.g., Triple Modular Redundancy

(TMR), are agnostic of the DNN algorithm and the DNN acceler-

ator’s architecture. Hence, these traditional resilience approaches

incur high overheads, which makes them challenging to deploy. In

this paper, we experimentally evaluate the resilience characteris-

tics of DNN systems (i.e., DNN software running on specialized

accelerators). We find that the error resilience of a DNN system

depends on the data types, values, data reuses, and types of layers

in the design. Based on our observations, we propose two efficient

protection techniques for DNN systems.

KEYWORDS

Deep Learning, Silent Data Corruption, Soft Error, Reliability

ACM Reference Format:

Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai,

Karthik Pattabiraman, Joel Emer, and StephenW. Keckler. 2017. Understand-

ing Error Propagation inDeep LearningNeural Network (DNN)Accelerators

and Applications. In Proceedings of SC17. ACM, Denver, CO, USA, 12 pages.

https://doi.org/10.1145/3126908.3126964

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SC17, November 12–17, 2017, Denver, CO, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5114-0/17/11. . . $15.00

https://doi.org/10.1145/3126908.3126964

1 INTRODUCTION

Deep learning neural network (DNN) applications are widely used

in high-performance computing systems and datacenters [4, 18, 47].

Researchers have proposed the use of specialized hardware accel-

erators to accelerate the inferencing process of DNNs, consisting

of thousands of parallel processing engines [12, 14, 25]. For exam-

ple, Google recently announced its DNN accelerator, the Tensor

Processing Unit (TPU), which they deploy in their datacenters for

DNN applications [58].

While the performance of DNN accelerators and applications

have been extensively studied, the reliability implications of using

them is not well understood. One of the major sources of unrelia-

bility in modern systems are soft errors, typically caused by high-

energy particles striking electronic devices and causing them to

malfunction (e.g., flip a single bit) [5, 16]. Such soft errors can cause

application failures, and they can result in violations of safety and

reliability specifications. For example, the IEC 61508 standard [28]

provides reliability specifications for a wide range of industrial

applications ranging from the oil and gas industry to nuclear power

plants. Deep neural networks have promising uses for data analyt-

ics in industrial applications [60], but they must respect the safety

and reliability standards of the industries where they are employed.

A specific and emerging example of HPC DNN systems is for

self-driving cars (i.e., autonomous vehicles), which deploy high

performance DNNs for real-time image processing and object iden-

tification. The high performance, low power, high reliability, and

real-time requirements of these applications require hardware that

rivals that of the fastest and most reliable supercomputer (albeit

with lower precision and memory requirements). For instance,

NVIDIA Xavier—a next-generation SoC with a focus on self-driving

applications—is expected to deliver 20 Tops/s at 20W in 16nm tech-

nology [51]. We focus our investigation into DNN systems
1
in this

emerging HPC market due to its importance, stringent reliability

requirements, and its heavy use of DNNs for image analysis. The

ISO 26262 standard for functional safety of road vehicles mandates

the overall FIT rate
2
of the System on Chip (SoC) carrying the DNN

1
We use the term DNN systems to refer to both the software and the hardware

accelerator that implements the DNN.

2
Failure-in-Time rate: 1 FIT = 1 failure per 1 billion hours

https://doi.org/10.1145/3126908.3126964
https://doi.org/10.1145/3126908.3126964

SC17, November 12–17, 2017, Denver, CO, USA G. Li et al.

inferencing hardware under soft errors to be less than 10 FIT [48].

This requires us to measure and understand the error resilience

characteristics of these high-performance DNN systems.

This paper takes a first step towards this goal by (1) charac-

terizing the propagation of soft errors from the hardware to the

application software of DNN systems, and (2) devising cost-effective

mitigation mechanisms in both software and hardware, based on

the characterization results .

Traditional methods to protect computer systems from soft errors

typically replicate the hardware components (e.g., Triple Modular

Redundancy or TMR). While these methods are useful, they often

incur large overheads in energy, performance and hardware cost.

This makes them very challenging to deploy in self-driving cars,

which need to detect objects such as pedestrians in real time [33]

and have strict cost constraints. To reduce overheads, researchers

have investigated software techniques to protect programs from soft

errors, e.g., identifying vulnerable static instructions and selectively

duplicating the instructions [20, 26, 35]. The main advantage of

these techniques is that they can be tuned based on the application

being protected. However, DNN software typically has a very differ-

ent structure compared to general-purpose software. For example,

the total number of static instruction types running on the DNN

hardware is usually very limited (less than five) as they are repeat-

edly executing the multiply-accumulate (MAC) operations. This

makes these proposed techniques very difficult to deploy as dupli-

cating even a single static instruction will result in huge overheads.

Thus, current protection techniques are DNN-agnostic in that they

consider neither the characteristics of DNN algorithms, nor the

architecture of hardware accelerators. To the best of our knowledge,

we are the first to study the propagation of soft errors in DNN systems

and devise cost-effective solutions to mitigate their impact.

We make the following major contributions in this paper:

• We modify a DNN simulator to inject faults in four widely used

neural networks (AlexNet, CaffeNet, NiN and ConvNet) for im-

age recognition, using a canonical model of the DNN accelerator

hardware.

• We perform a large-scale fault injection study using the simulator

for faults that occur in the data-path of accelerators. We classify

the error propagation behaviors based on the structure of the

neural networks, data types, positions of layers, and the types

of layers.

• We use a recently proposed DNN accelerator, Eyeriss [13], to

study the effect of soft errors in different buffers and calculate

its projected FIT rates.

• Based on our observations, we discuss the reliability implications

of designing DNN accelerators and applications and also propose

two cost-effective error protection techniques to mitigate Silent

Data Corruptions (SDCs) i.e., incorrect outcomes. The first tech-

nique, symptom-based detectors, is implemented in software and

the second technique, selective latch hardening, in hardware. We

evaluate these techniques with respect to their fault coverage

and overhead.

Our main results and implications are as follows:

• We find that different DNNs have different sensitivities to SDCs

depending on the topology of the network, the data type used,

and the bit position of the fault. In particular, we find that only

high-order bits are vulnerable to SDCs, and the vulnerability

is proportional to the dynamic value range the data type can

represent. The implications of this result are twofold: (1) When

designing DNN systems, one should choose a data type providing

just-enough dynamic value range and precision. The overall FIT

rate of the DNN system can be reduced by more than an order

of magnitude if we do so - this is in line with recent work that

has proposed the use of such data types for energy efficiency.

(2) Leveraging the asymmetry of the SDC sensitivity of bits, we

can selectively protect the vulnerable bits using our proposed

selective latch hardening technique. Our evaluation shows that

the corresponding FIT rate of the datapath can be reduced by

100x with about 20% area overhead.

• We observe that faults causing a large deviation in magnitude of

values likely lead to SDCs. Normalization layers can reduce the

impact of such faults by averaging the faulty values with adjacent

correct values, thereby mitigating SDCs. While the normalization

layers are typically used to improve performance of a DNN, they

also boost its resilience. Based on the characteristics, we propose

a symptom-based detector that provides 97.84% precision and

92.08% recall in error detection, for selected DNNs and data types.

• In our case study of Eyeriss, the sensitivity study of each hard-

ware component shows that some buffers implemented to lever-

age data locality for performance may dramatically increase the

overall FIT rate of a DNN accelerator by more than 100x. This

indicates that novel dataflows proposed in various studies should

also add protection to these buffers as they may significantly

degrade the reliability otherwise.

• Finally, we find that for the Eyeriss accelerator platform, the FIT

rates can exceed the safety standards (i.e., ISO 26262) by orders

of magnitude without any protection. However, applying the pro-

posed protection techniques can reduce the FIT rate considerably

and restore it within the safety standards.

2 BACKGROUND

2.1 Deep Learning Neural Networks

A deep learning neural network (DNN) is a directed acyclic graph

consisting of multiple computation layers [34]. A higher level ab-

straction of the input data or a feature map (fmap) is extracted to

preserve the information that are unique and important in each

layer. There is a very deep hierarchy of layers in modern DNNs,

and hence their name.

We consider convolutional neural networks of DNNs, as they

are used in a broad range of DNN applications and deployed in

self-driving cars, which are our focus. In such DNNs, the primary

computation occurs in the convolutional layers (CONV) that per-

form multi-dimensional convolution calculations. The number of

convolutional layers can range from three to a few tens of lay-

ers [27, 31]. Each convolutional layer applies a kernel (or filter) on

the input fmaps (ifmaps) to extract underlying visual characteristics

and generate the corresponding output fmaps (ofmaps).

Each computation result is saved in an activation (ACT) after

being processed by an activation function (e.g., ReLU), which is in

turn, the input of the next layer. An activation is also known as a

neuron or a synapse - in this work, we use ACT to represent an ac-

tivation. ACTs are connected based on the topology of the network.

For example, if two ACTs, A and B, are both connected to an ACT C

Understanding Error Propagation in DNN Accelerators and Applications SC17, November 12–17, 2017, Denver, CO, USA

in the next layer, thenACT C is calculated usingACTA and B as the

inputs. In convolutional layers, ACTs in each fmap are usually fully

connected to each other, whereas the connection of ACTs between

each fmap in other layers are usually sparse. In some DNNs, a small

number (usually less than 3) of fully-connected layers (FC) are

typically stacked behind the convolutional layers for classification

purposes. In between the convolutional and fully-connected layers,

additional layers can be added, such as the pooling (POOL) and

normalization (NORM) layers. POOL selects the ACT of the local

maximum in an area to be forwarded to the next layer and discards

the rest in the area, so the size of fmaps will become smaller after

each POOL. NORM averages ACT values based on the surrounding

ACTs. Thus ACT values will also be modified after the NORM layer.

Once a DNN topology is constructed, the network can be fed

with training input data, and the associated weights, abstracted

as connections between ACTs, will be learned through a back-

propagation process. This is referred to as the training phase of

the network. The training is usually done once, as it is very time-

consuming, and then the DNN is ready for image classification with

testing input data. This is referred to as the inferencing phase of

the network and is carried out many times for each input data set.

The input of the inferencing phase is often a digitized image, and

the output is a list of output candidates of possible matches such as

car, pedestrian, animal, each with a confidence score. Self-driving

cars deploy DNN applications for inferencing, and hence, we focus

on the inferencing phase of DNNs.

2.2 DNN Accelerator

Many specialized accelerators [12, 13, 25] have been proposed for

DNN inferencing, each with different features to cater to DNN al-

gorithms. However, there are two properties common to all DNN

algorithms that are used in the design of all DNN accelerators: (1)

MAC operations in each feature map have very sparse dependen-

cies, which can be computed in parallel, and (2) there are strong

temporal and spatial localities in data within and across each feature

map, which allow the data to be strategically cached and reused. To

leverage the first property, DNN accelerators adopt spatial architec-

tures [57], which consist of massively parallel processing engines

(PEs), each of which computes MACs. Figure 1 shows the architec-

ture of a general DNN accelerator. A DNN accelerator consists of

a global buffer and an array of PEs. The accelerator is connected

to DRAM where data is transferred from. A CPU is usually used to

off-load tasks to the accelerator. The overall architecture is shown

in Figure 1a. The ALU of each PE consists of a multiplier and an

adder as execution units to perform MACs — this is where the

majority of computations happen in DNNs. A general structure of

the ALU in each PE is shown in Figure 1b.

(a) Overview (b) ALU in PE

Figure 1: Architecture of general DNN accelerators

To leverage the second property of DNN algorithms, special

buffers are added on each PE as local scratchpad to cache data for

reuse. Each DNN accelerator may implement its own dataflow to

explore data localities. We classify the localities in DNNs into three

major categories:

• Weight Reuse:Weight data of each kernel can be reused in each

fmap as the convolutions involving the kernal data are used many

times on the same ifmap.

• Image Reuse: Image data of each fmap can be reused in all con-

volutions where the ifmap is involved, because different kernels

operate on the same sets of ifmap in each layer.

• Output Reuse: Computation results of MACs can be buffered

and consumed on-PE without transferring off the PEs.

Table 1 illustrates nine different DNN accelerators that have been

proposed in prior work and the corresponding data localities they

exploit in their dataflows. As can be seen, each accelerator exploits

one of more localities in its dataflow. Eyeriss [13] considers all of

the three data localities in its dataflow.

We separate faults that originate in the datapath (i.e., latches in

execution units) from those that originate in buffers (both on- and

off-PEs), because they propagate differently: faults in the datapath

will be only read once, whereas faults in buffers may be read mul-

tiple times due to reuse and hence the same fault can be spread to

multiple locations within short time windows.

Table 1: Data Reuses in DNN Accelerators

Accelerators Weight

Reuse

Image

Reuse

Output

Reuse

Zhang et al. [61], Diannao [12], Dadiannao [14] x x x

Chakradhar et al. [10], Sriram et al. [53], Sankaradas et al. [49],

nn-X [23], K-Brain [41], Origami [9]

✓ x x

Gupta et al. [24], Shidiannao [19], Peemen et al. [43] x x ✓
Eyeriss [13] ✓ ✓ ✓

2.3 Consequences of Soft Errors

The consequences of soft errors that occur in DNN systems can be

catastrophic as many of them are safety-critical, and error mitiga-

tion is required to meet certain reliability targets. For example, in

self-driving cars, a soft error can lead to misclassification of objects,

resulting in a wrong action taken by the car. In our fault injection

experiments, we found many cases where a truck can be misclassi-

fied under a soft error. We illustrate this in Figure 2. The DNN in the

car should classify the coming object as a transporting truck in a

fault-free execution and apply the brakes in time to avoid a collision

(Figure 2a). However, due to a soft error in the DNN, the truck is

misclassified as a bird (Figure 2b), and the braking action may not

be applied in time to avoid the collision, especially when the car is

operating at high speed. This is an important concern as it often re-

sults in the violation of standards such as ISO 26262 dealing with the

functional safety of road vehicles [48], which requires the System

on Chip (SoC) carrying DNN inferencing hardware in self-driving

cars to have a soft error FIT rate less than 10 FIT [2], regardless of

the underlying DNN algorithm and accuracy. Since a DNN acceler-

ator is only a fraction of the total area of the SoC, the FIT allowance

of a DNN accelerator should be much lower than 10 in self-driving

cars. However, we find that a DNN accelerator alone may exceed the

total required FIT rate of the SoC without protection (Section 5.2).

SC17, November 12–17, 2017, Denver, CO, USA G. Li et al.

(a) Fault-free execution: A truck

is identified by the DNN and

brakes are applied

(b) SDC: Truck is incorrectly

identified as bird and brakes

may be not applied

Figure 2: Example of SDC that could lead to collision in

self-driving cars due to soft errors

3 EXPLORATION OF DESIGN SPACE

We seek to understand how soft errors that occur in DNN acceler-

ators propagate in DNN applications and cause SDCs (we define

SDCs later in Section 4.6). We focus on SDCs as these are the most

insidious of failures and cannot be detected easily. There are four

parameters that impact of soft errors on DNNs:

(1) Topology and Data Type: Each DNN has its own distinct

topology which affects error propagation. Further, DNNs can also

use different data types in their implementation. We want to ex-

plore the effect of the topology and data type on the overall SDC

probability.

(2) Bit Position and Value: To further investigate the impact

of data type on error propagation, we examine the sensitivity of

each bit position in the networks using different data types. This is

because the values represented by a data type depend on the bit po-

sitions affected, as different data types interpret each bit differently

(explained in Section 4.5). Hence, we want to understand how SDC

probabilities vary based on the bit corrupted in each data type and

how the errors result in SDCs affect program values.

(3) Layers: Different DNNs have different layers - this includes

the differences in type, position, and the total number of layers. We

investigate how errors propagate in different layers and whether

the propagation is influenced by the characteristics of each layer.

(4)DataReuse:Wewant to understand how different data reuses

implemented in the dataflows of DNN accelerators affects the SDC

probability. Note that unlike other parameters, data reuse is not a

property of the DNN itself but of its hardware implementation.

4 EXPERIMENTAL SETUP

4.1 Networks

Table 2: Networks Used

Network Dataset No. of Output Candi-

dates

Topology

ConvNet [17] CIFAR-10 10 3 CONV + 2 FC

AlexNet [31] ImageNet 1,000 5 CONV(with LRN) + 3 FC

CaffeNet [8] ImageNet 1,000 5 CONV(with LRN) + 3 FC

NiN [37] ImageNet 1,000 12 CONV

We focus on convolutional neural networks in DNNs, as they

have shown great potential in solving many complex and emerging

problems and are often executed in self-driving cars. There are four

neural networks that we consider in Table 2. They range from the

relatively simple 5-layer ConvNet to the 12-layer NiN. The reasons

we chose these networks are: (1) They have different topologies and

methods implemented to cover a variety of common features used

in today’s DNNs, and the details are publicly accessible, (2) they are

often used as benchmarks in developing and testing DNN acceler-

ators [13, 30, 52], and (3) they are well known to solve challenging

problems, (4) and the official pre-trained models are freely available.

This allows us to fully reproduce the networks for benchmarking

puposes. All of the networks perform the same task, namely im-

age classification. We use the ImageNet dataset [29] for AlexNet,

CaffeNet and NiN, and the CIFAR-10 dataset [15] for ConvNet, as

they were trained and tested with these datasets. We use these

reference datasets and the pre-trained weights together with the

corresponding networks from the Berkeley Vision and Learning

Center (BVLC) [6].

We list the details of each network in Table 2. As shown, all

networks except NiN have fully-connected layers behind the convo-

lutional layers. All four networks implement ReLU as the activation

function and use the max-pooling method in their sub-sampling

layers. Both AlexNet and CaffeNet use a Local Response Normal-

ization (LRN) layer following each of the first two convolutional

layers - the only difference is the order of the ReLU and the sub-

sampling layer in each convolution layer. In AlexNet, CaffeNet and

ConvNet, there is a soft-max layer at the very end of each network

to derive the confidence score of each ranking, which is also part of

the network’s output. However, in NiN, there is no such soft-max

layer. Hence, the output of the NiN network has only the ranking

of each candidate without their confidence scores.

4.2 DNN Accelerators

We consider nine of DNN accelerators mentioned in Table 1. We

separate the faults in the datapaths of the networks from those

in the buffers. We study datapath faults based on the common ab-

straction of their execution units in Figure 1b. Thus, the results for

datapath faults apply to all nine accelerators.

For buffer faults, since the dataflow (and buffer structure) is dif-

ferent in each accelerator, we have to choose a specific design. We

chose the Eyeriss accelerator for studying buffer faults because: (1)

The dataflow of Eyeriss includes all three data localities in DNNs

listed in Table 1, which allows us to study the data reuse seen in

other DNN accelerators, and (2) the design parameters of Eyeriss

are publicly available, which allows us to conduct a comprehensive

analysis on its dataflow and overall resilience.

4.3 Fault Model

We consider transient, single-event upsets that occur in the data

path and buffers, both inside and outside the processing engines of

DNN accelerators. We do not consider faults that occur in combina-

tional logic elements as they are much less sensitive to soft errors

than storage elements shown in recent studies [22, 50]. We also do

not consider errors in control logic units. This is due to the nature

of DNN accelerators which are designed for offloaded data acceler-

ation - the scheduling is mainly done by the host (i.e., CPU). Finally,

Understanding Error Propagation in DNN Accelerators and Applications SC17, November 12–17, 2017, Denver, CO, USA

because our focus is on DNN accelerators, we do not consider faults

in the CPU, main memory, or the memory/data buses.

4.4 Fault Injection Simulation

Since we do not have access to the RTL implementations of the ac-

celerators, we use a DNN simulator for fault injection. We modified

an open-source DNN simulator framework, Tiny-CNN [56], which

accepts Caffe pre-trained weights [7] of a network for inferencing

and is written in C++. We map each line of code in the simulator to

the corresponding hardware component, so that we can pinpoint

the impact of the fault injection location in terms of the underly-

ing microarchitectural components. We randomly inject faults in

the hardware components we consider by corrupting the values in

the corresponding executions in the simulator. This fault injection

method is in line with other related work [26, 32, 35, 36, 59].

4.5 Data Types

Different data types offer different tradeoffs between energy con-

sumption and performance in DNNs. Our goal is to investigate the

sensitivity of different design parameters in data types to error prop-

agation. Therefore, we selected a wide range of data types that have

different design parameters as listed in Table 3. We classify them

into two types: floating-point data type (FP) and fixed-point data

type (FxP). For FP, we choose 64-bit double, 32-bit float, and 16-bit

half-float, all of which follow the IEEE 745 floating-point arith-

metic standard. We use the terms DOUBLE, FLOAT, and FLOAT16

respectively for these FP data types in this study. For FxPs, unfor-

tunately there is no public information about how binary points

(radix points) are chosen for specific implementations. Therefore,

we choose different binary points for each FxP.We use the following

notations to represent FxPs in this work: 16b_rb10 means a 16-bit in-

teger with 1 bit for the sign, 5 bits for the integer part, and 10 bits for

the mantissa, from the leftmost bit to the rightmost bit. We consider

three FxP types, namely 16b_rb10, 32b_rb10 and 32b_rb26. They

all implement 2’s complement for their negative arithmetic. Any

value that exceeds the maximum or minimum dynamic value range

will be saturated to the maximum or minimum value respectively.

Table 3: Data types used

Data

Type

FP or

FxP

Data

Width

Bits (From left to right)

DOUBLE FP 64-bit 1 sign bit, 11 bits for exponent, 52 bits for mantissa

FLOAT FP 32-bit 1 sign bit, 8 bits for exponent, 23 bits for mantissa

FLOAT16 FP 16-bit 1 sign bit, 5 bits for exponent, 10 bits for mantissa

32b_rb26 FxP 32-bit 1 sign bit, 5 bits for integer, 26 bits for mantissa

32b_rb10 FxP 32-bit 1 sign bit, 21 bits for integer, 10 bits for mantissa

16b_rb10 FxP 16-bit 1 sign bit, 5 bits for integer, 10 bits for mantissa

4.6 Silent Data Corruption (SDC)

We define the SDC probability as the probability of an SDC given

that the fault affects an architecturally visible state of the program

(i.e., the fault was activated). This is in line with the definition used

in other work [20, 26, 36, 59].

In a typical program, an SDCwould be a failure outcome in which

the application’s output deviates from the correct (golden) output.

This comparison is typicallymade on a bit-by-bit basis. However, for

DNNs, there is often not a single correct output, but a list of ranked

outputs each with a confidence score as described in Section 2.1, and

hence a bit-by-bit comparison would be misleading. Consequently,

we need to define new criteria to determine what constitutes an

SDC for a DNN application.We define four kinds of SDCs as follows:

• SDC-1: The top ranked element predicted by the DNN is different

from that predicted by its fault-free execution. This is the most

critical SDC because the top-ranked element is what is typically

used for downstream processing.

• SDC-5: The top ranked element is not one of the top five predicted

elements of the fault-free execution of the DNN.

• SDC-10%: The confidence score of the top ranked element varies

by more than +/-10% of its fault-free execution.

• SDC-20%: The confidence score of the top ranked element varies

by more than +/-20% of its fault-free execution.

4.7 FIT Rate Calculation

The formula of calculating the FIT rate of a hardware structure is

shown in Equation 1, where Rraw is the raw FIT rate (estimated

as 20.49 FIT/Mb by extrapolating the results of Neale et al. [39].

The original measurement for a 28nm process is 157.62 FIT/MB

in the paper. We project this for a 16nm process by applying the

trend shown in Figure 1 of the Neale paper
3
). Scomponent is the

size of the component, and SDCcomponent is the SDC probability of

each component. We use this formula to calculate the FIT rate of

datapath components and buffer structures of DNN accelerators, as

well as the overall FIT rate of Eyeriss in Section 5.1 and Section 5.2.

FIT =
∑

component
Rraw∗Scomponent∗SDCcomponent (1)

5 CHARACTERIZATION RESULTS

We organize the results based on the origins of faults (i.e., datapath

faults and buffer faults) for each parameter. We randomly injected

3,000 faults per latch, one fault for each execution of the DNN appli-

cation. The error bars for all the experimental results are calculated

based on 95% confidence intervals.

5.1 Datapath Faults

5.1.1 Data Types and Networks. Figure 3 shows the results
of the fault injection experiments on different networks and differ-

ent data types. We make three observations based on the results.

First, SDC probabilities vary across the networks for the same

data type. For example, using the FLOAT data type, the SDC prob-

abilities for NiN are higher than for other networks using the same

data type (except ConvNet - see reason below). This is because of

the different structures of networks in terms of sub-sampling and

normalization layers which provide different levels of error mask-

ing - we further investigate this in Section 5.1.4. Further, ConvNet

has the highest SDC propagation probabilities among all the net-

works considered (we show the graph for ConvNet separately as its

SDC probabilities are significantly higher than the other networks).

This is because the structure of ConvNet is much less deep than for

other networks, and consequently there is higher error propagation

in ConvNet. For example, there are only 3 convolutional layers

3
We also adjusted the original measurement by a factor of 0.65 as there is a mistake

we found in the paper. The authors of the paper have acknowledged the mistake in

private email communications with us.

SC17, November 12–17, 2017, Denver, CO, USA G. Li et al.

(a) SDC probability for AlexNet, CaffeNet and NiN (Error bar is from 0.01% to 0.13%)

(b) SDC probability for ConvNet (Error bar is from 0.11% to 0.34%)

Figure 3: SDC probability for different data types in different networks (for faults in PE latches).

in ConvNet, whereas there are 12 in NiN. Further, ConvNet does

not have normalization layers to provide additional error masking,

unlike AlexNet and CaffeNet.

Second, SDC probabilities vary considerably across data types.

For instance, in AlexNet, SDC-1 can be as high as 7.19% using

32b_rb10, and as low as 0.38% using FLOAT - the maximum dif-

ference is 240x (between SDC-1 in 32b_rb10 and 32b_rb26). The

reasons are further explored in Section 5.1.2.

Finally, for networks using the ImageNet dataset (all except Con-

vNet), there is little difference in the SDC probability for the four

different kinds of SDCs for a particular network and data type. Re-

call that there are 1,000 output dimensions in the ImageNet DNNs.

If the top ranked output is changed by the error, the new ranking is

likely to be outside of the top five elements, and its confidence score

will likely change by more than 20%. However, in ConvNet, which

uses the CIFAR-10 dataset, the four SDC probabilities are quite

different. This is because there are only 10 output dimensions in

ConvNet, and if the top ranked output is affected by errors, it is still

highly likely to stay within the top five elements. As a result, the

SDC-5 probability is quite low for this network. On the other hand,

the SDC-10% and SDC-20% probabilities are quite high in ConvNet

compared to the other networks, as the confidence scores are more

sensitive due to the small output dimensions compared to the other

networks. Note that since NiN does not provide confidence scores

in its output, we do not show SDC-10% and SDC-20% for NiN.

Because there is little difference between the SDC types for three

of the four networks, we focus on SDC-1 in the rest of the paper

and refer to them as SDCs unless otherwise specified.

5.1.2 Bit Position. We show the results by plotting the SDC

probabilities for each bit in each data type. Due to space constraints,

we only show the results for NiN using FLOAT and FLOAT16 data

types for FP, and for CaffeNet using 32b_rb26 and 32b_rb10 for FxP.

We however confirmed that similar observations apply to the rest

of networks and data types.

The results of NiN using FLOAT and FLOAT16 are shown in

Figure 4a and Figure 4b respectively. For the FP data types, only

the high-order exponent bits are likely to cause SDCs (if corrupted),

and not the mantissa and sign bits. We also observed that bit-flips

that go from 0 to 1 in the high-order exponent bits are more likely

to cause SDCs than those that go from 1 to 0. This is because the

correct values in each network are typically clustered around 0

(see Section 5.1.3) and hence, small deviations in the magnitude or

sign bits do not matter as much. This is also why the per-bit SDC

probability for FLOAT16 is lower than that for FLOAT. A corrupted

bit in the exponent of the latter is likely to cause a larger deviation

from 0, which in turn is likely to result in an SDC.

(a) FLOAT data type

in NiN (Error bar up

to 0.17%)

(b) FLOAT16 data type in NiN (Error

bar up to 0.09%)

(c) 32b_rb26 data

type in CaffeNet (Er-

ror bar up to 0.06%)

(d) 32b_rb10 data type in CaffeNet

(Error bar up to 0.2%)

Figure 4: SDC probability variation based on bit position cor-

rupted, bit positions not shown have zero SDC probability

(Y-axis is SDC probability and X-axis is bit position)

Understanding Error Propagation in DNN Accelerators and Applications SC17, November 12–17, 2017, Denver, CO, USA

For FxP data types, we plot the results for CaffeNet using 32b_rb26

and 32b_rb10 in Figure 4c and Figure 4d respectively. As can be

seen, only bits in the integer parts of the fixed point data types

are vulnerable. Both FxP data types have 32-bit data widths but

different binary point positions. We observed that the per-bit SDC

probability for the data type 32b_rb10 is much higher than that of

32b_rb26. For example, the 30th bit in 32b_rb10 has an SDC prob-

ability of 26.65% whereas the same bit position only has an SDC

probability of 0.22% in 32b_rb26. This is because 32b_rb26 has a

smaller dynamic range of values compared to 32b_rb10, and hence

the corrupted value in the former is likely to be closer to 0 than the

latter. This is similar to the FP case above.

5.1.3 Value. We chose AlexNet using FLOAT16 to explain how

errors that result in SDCs affect program values. We randomly sam-

pled the set of ACTs in the network that were affected by errors,

and compared their values before (in green) and after (in red) error

occurrence. We classified the results based on whether the errors

led to SDCs (Figure 5a) or were benign (Figure 5b). There are two

key observations: (1) If an error causes a large deviation in numeric

values, it likely causes an SDC. For example, in Figure 5a, more

than 80% of errors that lead to a large deviation lead to an SDC.

(2) In Figure 5b, on the other hand, only 2% of errors that cause

large deviations result in benign faults. This is likely because large

deviations make it harder for values in the network to converge

back to their correct values which are typically clustered around 0.

(a) Values before (green dots)

and after (red dots) errors result-

ing in SDCs. X-axis represents

values.

(b) Values before (green dots)

and after (red dots) errors result-

ing in benign. X-axis represents

values.

Figure 5: Values before and after error occurrence in

AlexNet using FLOAT16

We now ask the following questions. How close together are the

correct (error-free) values in each network, and how much do the

erroneous values deviate from the correct ones? Answering these

questions will enable us to formulate efficient error detectors. We

list boundary values of ACTs profiled in each layer and network

in Table 4. As can be seen, in each network and layer, the values

are bounded within a relatively small range in each layer. Further,

in the example of AlexNet using FLOAT16, 80% of the erroneous

values that lead to SDCs lie outside this range, while only 9.67% of

the erroneous values that lead to benign outcomes do so. Similar

trends are found in AlexNet, CaffeNet, and NiN using DOUBLE,

FLOAT, FLOAT16, and 32b_rb10. This is because the data types

provide more dynamic value range than the networks need. The

redundant value ranges lead to larger value deviation under faults

and are more vulnerable to SDCs. This indicates that we can lever-

age symptom-based detectors to detect SDCs when these data types

are used (Section 6.2). On the other hand, 16b_rb10 and 32b_rb26

suppress the maximum dynamic value ranges. ConvNet is an ex-

ception: ConvNet has a limited number of outputs and a small stack

of layers, as even a small perturbation in values may significantly

affect the output rankings.

5.1.4 Layer Position and Type. To investigate how errors in

different layers propagate through the network, we study the error

sensitivity of both the positions and types of layers. We show the

SDC probability per layer, ordered by the position for AlexNet,

CaffeNet, and NiN in Figure 6a and for ConvNet in Figure 6b.

(a) AlexNet, CaffeNet and NiN

(Error bar is up to 0.39%)

(b) ConvNet (Error bar is up

to 0.77%)

Figure 6: SDC probability per layer using FLOAT16, Y-axis

is SDC probability and X-axis is layer position

In Figure 6a, in AlexNet and CaffeNet, we observed very low SDC

probabilities in the first and second layers, compared to the other

layers. The reason is the Local Response Normalization (LRN) layers

implemented at the end of the first and second layers in these net-

works normalize the faulty values, thus mitigating the effect of large

deviations in the values. However, there is no LRN or similar normal-

ization layer in the other layers. NiN and ConvNet do not have such

a normalization layer, and hence, NiN (in Figure 6a) and ConvNet (in

Figure 6b) have a relatively flat SDC probability across all convolu-

tional layers (layers 1 to 12 in NiN and layer 1 to layer 3 in ConvNet).

We also observe there is an increase in the SDC probabilities in lay-

ers in AlexNet and CaffeNet after the LRNs. This is because the later

layers require narrower value ranges (Table 4), and hence wider

value ranges and bits are likely to result in SDCs. Note that the fully-

connected layers in AlexNet (layer 6 to layer 8), CaffeNet (layer 6 to

layer 8), and ConvNet (layers 4 and 5) have higher SDC probabilities.

This is because (1) they are able to directly manipulate the ranking

of the output candidates, and (2) ACTs are fully-connected, and

hence faults spread to all ACTs right away and have much higher

impact on the final outputs. Recall that there is no fully-connected

layer in NiN, however, and hence this effect does not occur.

To further illustrate the effect of LRN on mitigating error prop-

agation, we measured the average Euclidean distance between the

ACT values in the fault injection runs and the golden runs at the end

of each layer after faults are injected at the first layer in different

networks using the DOUBLE data type. The results are shown in

Figure 7. We choose the DOUBLE data type for this experiment as it

accentuates any differences due to its wide value range. As we can

see, the Euclidean distance decreases sharply from the first layer

to the second layer after LRN in AlexNet and CaffeNet. However,

neither NiN nor ConvNet implement LRN or similar layers, and

hence the Euclidean distances at each layer are relatively flat.

Recall that the POOL and ReLU layers are implemented in all four

networks we consider, and are placed at the end of each convolu-

tional and fully-connected layer after MACs. Recall also that POOL

SC17, November 12–17, 2017, Denver, CO, USA G. Li et al.

Table 4: Value range for each layer in different networks in the error-free execution

Network Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12

AlexNet -691.813

6̃62.505

-228.296

2̃24.248

-89.051

9̃8.62

-69.245

1̃45.674

-36.4747

1̃33.413

-78.978

4̃3.471

-15.043

1̃1.881

-5.542

1̃5.775

N/A N/A N/A N/A

CaffeNet -869.349

6̃08.659

-406.859

1̃56.569

-73.4652

8̃8.5085

-46.3215

8̃5.3181

-43.9878

1̃55.383

-81.1167

3̃8.9238

-14.6536

1̃0.4386

-5.81158

1̃5.0622

N/A N/A N/A N/A

NiN -738.199

7̃14.962

-401.86

1̃267.8

-397.651

1̃388.88

-1041.76

8̃75.372

-684.957

1̃082.81

-249.48

1̃244.37

-737.845

9̃40.277

-459.292

5̃84.412

-162.314

4̃37.883

-258.273

2̃83.789

-124.001

1̃40.006

-26.4835

8̃8.1108

ConvNet -1.45216

1̃.38183

-2.16061

1̃.71745

-1.61843

1̃.37389

-3.08903

4̃.94451

-9.24791

1̃1.8078

N/A N/A N/A N/A N/A N/A N/A

Figure 7: Euclidean distance between the erroneous values

and correct values of all ACTs at each layer of networks

using DOUBLE, Y-axis is Euclidean distance and X-axis is

layer position (Faults are injected at layer 1)

picks the local maximum ACT value and discards the rest of the

ACTs before forwarding them to the next layer, while ReLU resets

values to zero if the value is negative. Since POOL and ReLU can

either discard or completely overwrite the values, they can mask

errors in different bits. Therefore, we study the bit-wise SDC proba-

bility (or error propagation rate) per layer after each POOL or ReLU

structure in convolutional layers in Table 5. We measured this rate

by comparing the ACT values bit by bit at the end of the last layer.

Due to space constraints, we only show the result of AlexNet using

FLOAT16, though similar results were observed in the other cases.

Table 5: Percentage of bit-wise SDC across layers in AlexNet

using FLOAT16 (Error bar is from 0.2% to 0.63%)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

19.38% 6.20% 8.28% 6.08% 1.63%

There are three main observations in Table 5: (1) In general, there

is a decreasing propagation probability across layers, as faults that

occur in earlier layers have a higher probability of propagating to

other layers and spreading. (2) Even through many faults spread

into multiple locations and reach the last layer, only a small fraction

of them (5.5% on average, compared with AlexNet in Figure 6a)

will affect the final ranking of the output candidates. The reason,

as explained in Section 5.1.3, is that the numerical value of ACTs

affected by faults is a more influential factor affecting the SDC

probability than the number of erroneous ACTs. (3) A majority of

the faults (84.36% on average) are masked by either POOL or ReLU

during the propagation and cannot even reach the last layer. There-

fore, error detection techniques that are designed to detect bit-wise

mismatches (i.e., DMR) may detect many errors that ultimately get

masked.

5.1.5 Datapath FIT rate. We calculate the datapath FIT rates

for different networks using each datatype based on the canonical

model of datapath in Figure 1b, and the formula in Eq. 1. Note that

the latches assumed in between execution units are the minimum

sets of latches to implement the units, so our calculations of dat-

apath FIT rate are conservative. The results are listed in Table 6.

As seen, the FIT rate varies a lot depending on the network and

data type used. For example, it ranges from 0.004 to 0.84 in NiN

and ConvNet using 16b_rb10, and from 0.002 to 0.42 in AlexNet

using 16b_rb10 and 32b_rb10. Depending on the design of the DNN

accelerator and the application, the datapath’s FIT rate may exceed

the FIT budget allowed for the DNN accelerator and will hence

need to be protected. We will further discuss this in Section 6.1.

Table 6: Datapath FIT rate in each data type and network

ConvNet AlexNet CaffeNet NiN

FLOAT 1.76 0.02 0.03 0.10

FLOAT16 0.91 0.009 0.009 0.008

32b_rb26 1.73 0.002 0.005 0.002

32b_rb10 2.45 0.42 0.41 0.54

16b_rb10 0.84 0.002 0.007 0.004

5.2 Buffer Faults: A Case Study on Eyeriss

Eyeriss [13] is a recently proposed DNN accelerator whose com-

ponent parameters are publicly available. We use Eyeriss in this

case study - the reason is articulated in Section 4.2. Other than the

components shown in Figure 1, Eyeriss implements a Filter SRAM,

Img REG and PSum REG on each PE for data reuses listed in Table 1.

The details of the dataflow are described in Chen et al. [13]. We

adopted the original parameters of the Eyeriss microarchitecture at

65 nm and projected it to 16nm technology. For the purpose of this

study, we simply scale the components of Eyeriss in proportion to

process technology generation improvements, ignoring other archi-

tectural issues. In Table 7, we list the microarchitectural parameters

of Eyeriss at the original 65nm and the corresponding projections

at 16nm. We assume a scaling factor of 2 for each technology gen-

eration, and as there are 4 generations between 65nm and 16nm

technology (based on published values by the TSMC foundry), we

scaled up the number of PEs and the sizes of buffers by a factor of 8.

In the rest of this work, we use the parameters of Eyeriss at 16nm.

Table 7: Parameters of microarchitectures in Eyeriss (As-

suming 16-bit data width, and a scaling factor of 2 for each

technology generation)

Feature

Size

No. of

PE

Size of

Global

Buffer

Size of One

Filter SRAM

Size of One

Img REG

Size of One

PSum REG

65nm 168 98KB 0.344KB 0.02KB 0.05KB

16nm 1,344 784KB 3.52KB 0.19KB 0.38KB

5.2.1 Data Reuse and Buffer. Here we measure and compare

SDC probabilities of different buffers in Eyeriss by randomly in-

jecting 3,000 faults in each buffer component for different network

Understanding Error Propagation in DNN Accelerators and Applications SC17, November 12–17, 2017, Denver, CO, USA

parameters. By analyzing the results, we found that faults in buffers

exhibit similar trends as datapath faults for each parameter of data

type, network, value, layer, though the absolute SDC probabilities

and FIT rates are different (usually higher than for datapath faults

due to the amount of reuse and size of the components). Hence,

we do not repeat these sensitivity results in this section. Rather,

we present SDC probabilities and FIT rates for each buffer of the

different networks in Table 8. The calculation of the FIT rate is

based on Eq. 1. We show the results using the 16b_rb10 data type

as a 16-bit FxP data type is implemented in Eyeriss.

Table 8: SDC probability and FIT rate for each buffer

component in Eyeriss (SDC probability / FIT Rate)

Network Global Buffer Filter SRAM Img REG PSum REG

ConvNet 69.70%/87.47 66.37%/62.74 70.90%/3.57 27.98%/2.82

AlexNet 0.16%/0.20 3.17%/3.00 0.00%/0.00 0.06%/0.006

CaffeNet 0.07%/0.09 2.87%/2.71 0.00%/0.00 0.17%/0.02

NiN 0.03%/0.04 4.13%/3.90 0.00%/0.00 0.00%/0.00

As seen, as the network becomes deeper, its buffers are much

more immune to faults. For example, ConvNet is less deep than the

other three networks, and the FIT rate of Global Buffer and Filter

SRAM are respectively 87.47 and 62.74, compared to 0.2 and 3.0 for

AlexNet. This sensitivity is consistent with datapath faults. Another

observation is that Img REG and PSum REG have relatively low

FIT rates as they both have smaller component sizes and a short

time window for reuse: a faulty value in Img REG will only affect a

single row of fmap and only the next accumulation operation if in

PSum REG. Finally, we find that buffer FIT rates are usually a few

orders of magnitude higher than datapath FIT rates, and adding

these buffers for reuse dramatically increases the overall FIT rate

of DNN accelerators. The reasons are twofold: (1) Buffers by nature

have larger sizes than the total number of latches in the datapath,

and (2) due to reuse, the same fault can be read multiple times and

lead to the spreading of errors to multiple locations in a short time,

resulting in more SDCs. Both lead to a higher FIT rate (See in Eq. 1).

We will further discuss its implication in Section 6.1.

6 MITIGATION OF ERROR PROPAGATION

We explore three directions to mitigate error propagation in DNN

systems based on the results in the previous section. First, we dis-

cuss the reliability implications in designing DNN systems. Sec-

ond, we adapt a previously proposed software based technique,

Symptom-based Error Detectors (SED), for detecting errors in DNN-

based systems. Finally, we use a recently proposed hardware tech-

nique, Selective Latch Hardening (SLH) to detect and correct data-

path faults. Both techniques leverage the observations made in the

previous section and are optimized for DNNs.

6.1 Implications to Resilient DNN Systems

(1) Data Type: Based on our analysis in Section 5.1, we can con-

clude that DNNs should use data types that provide just-enough

numeric value range and precision required to operate the target

DNNs. For example, in Table 6, we found that the FIT rate of dat-

apath can be reduced by more than two orders of magnitude if we

replace type 32b_rb10 with type 32b_rb26 (from 0.42 to 0.002).

However, existing DNN accelerators tend to follow a one-size-

fits-all approach by deploying a data type representation which is

long enough to work for all computations in different layers and

DNNs [12, 13, 19]. Therefore, it is not always possible to eliminate

redundant value ranges that the data type provides across layers

and DNNs. The redundant value ranges are particularly vulnerable

to SDCs as they tend to cause much larger value deviations (Sec-

tion 5.1.2). We propose a low-cost symptom-based error detector

that detects errors caused by the redundant value ranges regardless

of whether conservative data types are used. A recent study has

proposed a reduced precision protocol which stores data in shorter

representations in memory and unfolds them when in the datapath

to save energy [30]. The approach requires hardware modifications

and may not be always supported in accelerators. We defer the

reliability evaluation of the proposed protocol to our future work.

(2) Sensitive Bits: Once a restricted data type is used for a

network, the dynamic value range is suppressed, mitigating SDCs

caused by out-of-range values. However, the remaining SDCs can

be harder to detect as erroneous values hide in normal value ranges

of the network. Fortunately, we observe that the remaining SDCs

are also caused by bit-flips at certain bit positions (i.e., high bit

positions in FxP) (Section 5.1.2). Hence, we can selectively harden

these bits to mitigate the SDCs (Section 6.3).

(3) Normalization Layers: The purpose of the normalization

layers such as the LRN layer is to increase the accuracy of the

network [31]. In Section 5.1.4, we found that LRN also increases

the resilience of the network as it normalizes a faulty value with

its adjacent fault-free values across different fmaps to mitigate

SDCs. Therefore, one should use such layers if possible. Further,

one should place error detectors after such layers to leverage the

masking opportunities, thus avoiding detecting benign faults.

(4) Data Reuse: Recently, multiple dataflows and architectures

have been proposed and demonstrated to provide both energy and

performance improvements [12, 13]. However, adding these local

buffers implementing more sophisticated dataflow dramatically in-

creases the FIT rate of a DNN accelerator. For example, the FIT rate

of Filter SRAMs (3.9 in NiN, Table 8) can be nearly 1000x higher

than the FIT rate of the entire datapath (0.004 in NiN, Table 8).

Unfortunately, however, protecting small buffers through ECC may

incur very high overheads due to smaller read granularities. We

propose an alternative approach, SED, to protect these buffers at

low cost (Section 6.2).

(5) Datapath Protection: From Table 6, we found the datapath

FIT rate alone can go up to 2.45 without careful design, or 0.84

even with a resilient data type (16b_rb10, in ConvNet). The safety

standard, for example in ISO 26262, mandates the overall FIT rate

of the SoC carrying DNN accelerator to be less than 10 FIT. Since a

DNN accelerator is often a very small area fraction of the total on

the SoC. The FIT budget allocated to the DNN accelerator should be

only a tiny fraction of 10. Hence, datapath faults cannot be ignored

as they stretch the FIT budget allocated to the DNN accelerator.

6.2 Symptom-based Error Detectors (SED)

A symptom-based detector is an error detector that leverages appli-

cation-specific symptoms under faults to detect anomalies. Exam-

ples of symptoms are unusual values of variables [26, 42], numbers

of loop iterations [26, 35], or address spaces accessed by the pro-

gram [35, 42]. For the proposed detector, we use the value ranges of

ACTs as the symptom to detect SDC-causing faults. This is based on

SC17, November 12–17, 2017, Denver, CO, USA G. Li et al.

the observation from Section 5.1.3: If an error makes the magnitude

of ACTs very large, it likely leads to an SDC, and if it does not, it

is likely to be benign. In the design of the error detector, there are

two questions that need to be answered: Where (which program

locations) and What (which reference value ranges) to check? The

proposed detector consists of two phases - we describe each phase

along with the answers to the two questions below:

Learning: Before deploying the detector, a DNN application

needs to be instrumented and executed with its representative test

inputs to derive the value ranges in each layer during the fault-

free execution. We can use these value ranges, say -X to Y, as the

bounds for the detector. However, to be safe, we apply an addi-

tional 10% cushion on top of the value ranges of each layer, that

is (-1.1*X) to (1.1*Y) as the reference values for each detector to

reduce false alarms. Note that the learning phase is only required

to be performed once before the deployment.

Deployment: Once the detectors are derived, they are checked

by the host which off-loads tasks to the DNN accelerator. At the end

of each layer, the data of fmaps of the current layer are calculated

and transferred to the global buffer from the PE array as the input

data of ifmaps for the next layer. These data will stay in the global

buffer during the entire execution of the next layer for reuse. This

gives us an opportunity to execute the detector asynchronously

from the host, and check the values in global buffer to detect er-

rors. We perform the detection asynchronously to keep the runtime

overheads as low as possible.

(a) Precision (b) Recall

Figure 8: Precision and recall of the symptom-based

detectors across networks (Error bar is from 0.03% to 0.04%)

Evaluation: After deploying the detector, we measure its cov-

erage by randomly injecting 3,000 single bit-flip faults in each hard-

ware component, using all 3 FP data types and 32b_rb10 in AlexNet,

CaffeNet and NiN, one fault per fault injection run. As we explained

earlier, we do not include the 16b_rb10 and 32b_rb26 data types

or the ConvNet network as they do not exhibit strong symptoms,

and hence symptom-based detectors are unlikely to provide high

coverage in these cases. So there are a total of 3,000*5*4*3=180,000

faults injected for this experiment.

We define two metrics in our evaluation: (1) Precision: 1 - (The

number of benign faults that are detected by the detector as SDC)

/ (The number of faults injected), and (2) Recall: (The number of

SDC-causing faults that are detected by the detector) / (The number

of total SDC-causing faults). The results are shown in Figure 8a

and Figure 8b for the precision and the recall respectively averaged

across the data types and components (due to space constraints,

we only show the average values). As can be seen, the average

precision is 90.21% and the average recall is 92.5%. Thus, we can

reduce the FIT rates of Eyeriss using FLOAT and FLOAT16 by 96%

(from 8.55 to 0.35) and 70% (from 2.63 to 0.79) respectively using

the symptom-based detector technique (based on Equation 1).

6.3 Selective Latch Hardening (SLH)

Latch hardening is a hardware error mitigation technique that adds

redundant circuitry to sequential storage elements (i.e., latches) to

make them less sensitive to errors. Protecting the latches in the

datapath can be vital for highly dependable systems as they become

the reliability bottleneck once all buffers are protected (e.g., by

ECCs). Given that the technology keeps scaling to smaller feature

sizes [5, 16], it will be more important to mitigate datapath faults

in the future. There have been a number of different hardened latch

designs that differ in their overheads and levels of protection, and

latch hardening need not be applied in an all-or-nothing manner.

For example, Sullivan et al. [54] developed an analytical model for

hardened latch design space exploration and demonstrated cost-

effective protection by hardening only the most sensitive latches

and by combining hardening techniques offering differing strengths

in an error-sensitivity proportional manner. Since we observed and

characterized asymmetric SDC sensitivity in different bits in Sec-

tion 5.1.2, we can leverage this model to selectively harden each

latch using the most efficient hardening technique to achieve suf-

ficient error coverage at a low cost.

Design Space Exploration: There are a wide variety of latch

hardening techniques that vary in their level of protection and over-

heads. Table 9 shows the three hardening techniques used by [54];

these same techniques are considered in this paper, though the

methodology should apply with any available hardened latches.

The baseline design in the table refers to an unprotected latch.

Table 9: Hardened latches used in design space exploration

Latch Type Area Overhead FIT Rate Reduction

Baseline 1x 1x

Strike Suppression (RCC) 1.15x 6.3x

Redundant Node (SEUT) 2x 37x

Triplicated (TMR) 3.5x 1,000,000x

Evaluation: Figure 9a shows the AlexNet FIT rate reduction

versus the fraction of protected latches assuming a perfect harden-

ing technique that completely eliminates errors. We plot this curve

to illustrate the maximum benefit one can achieve by protecting

bits that are more sensitive to SDC with priority. β characterizes

the asymmetry of SDC FIT rate in different bits (latches)—a high

β indicates that a small number of latches dictate the overall SDC

probability. As can be seen, there are negative exponential curves

in the figure, such that we can selectively protect only the most

sensitive latches for area-efficient SDC reduction.

Figure 9b and Figure 9c show the AlexNet FIT rate reduction

versus the latch area overhead when using each hardened latch, and

the optimal combination of the hardened designs (Multi) generated

by the model. Due to space constraints, we only show the AlexNet

result for the FLOAT16 and 16b_rb10 data types (the other networks

and data types exhibit similar trends). By exploiting the asymmetry

of error sensitivity in data type bits and combining complementary

hardening techniques, one can achieve significant protection while

paying only modest area costs. For example, applying the three

hardening techniques together can reduce the latch FIT rate by

Understanding Error Propagation in DNN Accelerators and Applications SC17, November 12–17, 2017, Denver, CO, USA

FLOAT16

16b_rb10

Uniform

0. 0.2 0.4 0.6 0.8 1.

0.2

0.4

0.6

0.8

1.

Fraction of Protected Latches

To
ta

lL
at

ch
FI

T
Re

du
ct

io
n

β=7.34

β=5.09

(a) FIT reduction ver-

sus the fraction of

protected PE latches

RCC

SEUT

TMR

Multi

1x 6.3x 37x 100x

5

10

15

20

25

30

Target Latch FIT Reduction
To

ta
lL

at
ch

O
ve

rh
ea

d
(%

)

(b) Overhead versus

FIT reduction using

FLOAT16

RCC

SEUT

TMR

Multi

1x 6.3x 37x 100x

5

10

15

20

25

30

Target Latch FIT Reduction

To
ta

lL
at

ch
O

ve
rh

ea
d
(%

)

(c) Overhead versus

FIT reduction using

16b_rb10

Figure 9: Selective Latch Hardening for the Eyeriss Acceler-

ator running AlexNet

100x, while incurring about 20% and 25% latch area overheads in

FLOAT16 and 16b_rb10, respectively. This translates to a chip-level

area overhead roughly akin to that required for ECC protection of

the larger (and more easily protected) SRAM structures.

7 RELATEDWORK

There were a few studies years ago on the fault tolerance of neural

networks [1, 3, 44]. While these studies performed fault injection

experiments on neural networks and analyzed the results, the net-

works they considered had very different topologies and many

fewer operations than today’s DNNs. Further, these studies were

neither in the context of the safety critical platforms such as self-

driving cars, nor did they consider DNN accelerators for executing

the applications. Hence, they do not provide much insight about

error propagation in modern DNN systems.

Reis et al. [46] and Oh et al. [40] proposed software techniques

that duplicate all instructions to detect soft errors. Due to the high

overheads of these approaches, researchers have investigated selec-

tively targeting the errors that are important to an application. For

example, Li et al. [35, 36] characterized error propagation patterns

in software applications on CPUs and GPUs and devised efficient

protection techniques. Hari et al. [26] analyzed popular benchmarks

and designed application-specific error detectors. Feng et al. [20]

proposed a static analysis method to identify vulnerable parts of

the applications for protection. Lu et al. [38] identified SDC-prone

instructions to protect using a decision tree classifier, while Laguna

et al. [32] used a machine learning approach to identify sensitive

instructions in scientific applications. While these techniques are

useful to mitigate soft errors in general purpose applications, they

cannot be easily applied to DNN systems which implement a differ-

ent instruction set and operate on a specialized microarchitecture.

Many studies [12, 13, 25] proposed novel microarchitectures for

accelerating DNN applications. These studies only consider the

performance and energy overheads of their designs and do not

consider reliability. In recent work, Fernades et. al. [21] evaluated

the resilience of histogram of oriented gradient applications for

self-driving cars, but they did not consider DNNs. Reagen et.al. [45]

and Chatterjee et.al. [11] explored energy-reliability limits of DNN

systems, but they focused on different networks and fault models.

The closest related work is by Temam et. al. [55], which inves-

tigated the error resilience of neural network accelerators at the

transistor-level. Our work differs in three aspects: (1) Their work

assumed a simple neural network prototype, whereas we investi-

gate modern DNN topologies. (2) Their work does not include any

sensitivity study and is limited to the hardware datapath of a single

neural network accelerator. Our work explores the resilience sensi-

tivity to different hardware and software parameters. (3) Their work

focused on permanent faults, rather than soft errors. Soft errors are

separately regulated by ISO 26262, and hence we focus on them.

8 CONCLUSION

DNNs (Deep Neural Networks) have gained prominence in recent

years and they are being deployed on hardware accelerators in

self-driving cars for real-time image classification. In this work, we

characterize the impact of soft errors on DNN systems through a

large-scale fault injection experiment with 4 popular DNNs running

on a recently proposed DNN hardware accelerator. We find that the

resilience of a DNN system depends on the data types, values, data

reuse, and the types of layers in the design. Based on these insights,

we formulate guidelines for designing resilient DNN systems and

propose two efficient DNN protection techniques to mitigate soft

errors. We find that the techniques significantly reduce the rate

of Silent Data Corruption (SDC) in DNN systems with acceptable

performance and area overheads.

9 ACKNOWLEDGEMENTS

We thank the anonymous reviewers of SC’17 for their comments

that helped improve the paper. This work was supported in part

by a Discovery Grant from the Natural Science and Engineering

Research Council (NSERC), Canada.

REFERENCES

[1] Alippi, Cesare, Vincenzo Piuri, and Mariagiovanna Sami. 1995. Sensitivity to

errors in artificial neural networks: A behavioral approach. IEEE Transactions on

Circuits and Systems I: Fundamental Theory and Applications (1995).

[2] Autonomous car facts 2016. Keynote: Autonomous Car ANewDriver for Resilient

Computing and Design-for-Test. (2016). Retrieved Oct. 2016 from https://nepp.

nasa.gov/workshops/etw2016/talks/15WED/20160615-0930-Autonomous_

Saxena-Nirmal-Saxena-Rec2016Jun16-nasaNEPP.pdf

[3] Bettola, Simone, and Vincenzo Piuri. 1998. High performance fault-tolerant

digital neural networks. IEEE transactions on computers (1998).

[4] Bojarski, Mariusz, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat

Flepp, Prasoon Goyal, Lawrence D. Jackel and others. 2016. End to End Learning

for Self-Driving Cars. arXiv preprint arXiv:1604.07316 (2016).

[5] Borkar, Shekhar. 2005. Designing reliable systems from unreliable components:

the challenges of transistor variability and degradation. In Proceedings of the

International Symposium on Microarchitecture (MICRO), Vol. 25. 10–16.

[6] BVCL 2014. BERKELEY VISION AND LEARNING CENTER. (2014). Retrieved

Oct. 2016 from http://bvlc.eecs.berkeley.edu

[7] Caffe Model 2014. Caffe Model Zoo. (2014). Retrieved Oct. 2016 from

http://caffe.berkeleyvision.org/model_zoo.html

[8] CaffeNet 2014. CaffeNet. (2014). Retrieved Oct. 2016 from

http://caffe.berkeleyvision.org/model_zoo.html

[9] Cavigelli, Lukas, David Gschwend, Christoph Mayer, Samuel Willi, Beat Muheim,

and Luca Benini. 2015. Origami: A convolutional network accelerator. In In

Proceedings of the 25th edition on Great Lakes Symposium on VLSI.

[10] Chakradhar, Srimat, Murugan Sankaradas, Venkata Jakkula, and Srihari Cadambi.

2010. A dynamically configurable coprocessor for convolutional neural networks.

In ACM SIGARCH Computer Architecture News.

[11] Chatterjee, Avhishek, and Lav R. Varshney. 2017. Energy-reliability limits

in nanoscale neural networks. In The 51st Annual Conference on Information

Sciences and Systems (CISS). 1–6.

[12] Chen, Tianshi, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji

Chen, and Olivier Temam. 2014. Diannao: A small-footprint high-throughput

accelerator for ubiquitous machine-learning. In ACM Sigplan Notices.

[13] Chen, Yu-Hsin, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial architecture

for energy-efficient dataflow for convolutional neural networks. In Proceedings

of the International Symposium on Computer Architecture (ISCA). 367–379.

https://nepp.nasa.gov/workshops/etw2016/talks/15WED/20160615-0930-Autonomous_Saxena-Nirmal-Saxena-Rec2016Jun16-nasaNEPP.pdf
https://nepp.nasa.gov/workshops/etw2016/talks/15WED/20160615-0930-Autonomous_Saxena-Nirmal-Saxena-Rec2016Jun16-nasaNEPP.pdf
https://nepp.nasa.gov/workshops/etw2016/talks/15WED/20160615-0930-Autonomous_Saxena-Nirmal-Saxena-Rec2016Jun16-nasaNEPP.pdf
http://bvlc.eecs.berkeley.edu
http://caffe.berkeleyvision.org/model_zoo.html
http://caffe.berkeleyvision.org/model_zoo.html

SC17, November 12–17, 2017, Denver, CO, USA G. Li et al.

[14] Chen, Yunji, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li

and others. 2014. Dadiannao: A machine-learning supercomputer. In Proceedings

of the International Symposium on Microarchitecture (MICRO).

[15] CIFAR dataset 2014. CIFAR-10. (2014). Retrieved Oct. 2016 from

https://www.cs.toronto.edu/~kriz/cifar.html

[16] Constantinescu, Cristian. 2008. Intermittent faults and effects on reliability

of integrated circuits. In Proceedings of the Reliability and Maintainability

Symposium. 370.

[17] ConvNet 2014. High-performance C++/CUDA implementation of

convolutional neural networks. (2014). Retrieved Oct. 2016 from

https://code.google.com/p/cuda-convnet

[18] Dahl, George E., Dong Yu, Li Deng, and Alex Acero. 2012. Context-dependent

pre-trained deep neural networks for large-vocabulary speech recognition. IEEE

Transactions on Audio, Speech, and Language Processing 20, 1 (2012), 30–42.

[19] Du, Zidong, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,

Xiaobing Feng, Yunji Chen, and Olivier Temam. 2015. ShiDianNao: shifting vision

processing closer to the sensor. In ACM SIGARCH Computer Architecture News.

[20] Feng, Shuguang and Gupta, Shantanu and Ansari, Amin and Mahlke, Scott. 2010.

Shoestring: probabilistic soft error reliability on the cheap. In ACM SIGARCH

Computer Architecture News, Vol. 38. ACM, 385–396.

[21] Fernandes, Fernando and Weigel, Lucas and Jung, Claudio and Navaux, Philippe

and Carro, Luigi and Rech, Paolo. 2016. Evaluation of histogram of oriented

gradients soft errors criticality for automotive applications. ACM Transactions

on Architecture and Code Optimization (TACO) 13, 4 (2016), 38.

[22] Gill, B., N. Seifert, and V. Zia. 2009. Comparison of alpha-particle and neutron-

induced combinational and sequential logic error rates at the 32nm technology

node. In Proceedings of the International Reliability Physics Symposium (IRPS).

[23] Gokhale, Vinayak, Jonghoon Jin, Aysegul Dundar, Berin Martini, and Eugenio

Culurciello. 2014. A 240 g-ops/s mobile coprocessor for deep neural networks. In

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops.

[24] Gupta, Suyog, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.

2015. Deep learning with limited numerical precision. (2015).

[25] Han, Song, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,

and William J. Dally. 2016. EIE: efficient inference engine on compressed deep

neural network. (2016).

[26] Hari, Siva Kumar Sastry and Adve, Sarita V and Naeimi, Helia. 2012. Low-cost

program-level detectors for reducing silent data corruptions. In Proceedings of

the International Conference on Dependable Systems and Networks (DSN).

[27] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep residual

learning for image recognition. Proceedings of the IEEE conference on computer

vision and pattern recognition (2015).

[28] IEC 61508 2016. Functional Safety and IEC 61508. (2016). Retrieved Oct. 2016

from http://www.iec.ch/functionalsafety/

[29] ImageNet 2014. ImageNet. (2014). Retrieved Oct. 2016 from http://image-net.org

[30] Judd, Patrick, Jorge Albericio, Tayler Hetherington, Tor M. Aamodt, Natalie

Enright Jerger, and Andreas Moshovos. 2016. Proteus: Exploiting Numerical

Precision Variability in Deep Neural Networks.

[31] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet

classification with deep convolutional neural networks. In Advances in neural

information processing systems.

[32] Laguna, Ignacio, Martin Schulz, David F. Richards, Jon Calhoun, and Luke Olson.

2016. Ipas: Intelligent protection against silent output corruption in scientific

applications. In Preceedings of the International Symposium on Code Generation

and Optimization (CGO).

[33] Lane, Nicholas D., and Petko Georgiev. 2015. Can deep learning revolutionize

mobile sensing?. In In Proceedings of the 16th International Workshop on Mobile

Computing Systems and Applications.

[34] LeCun, Yann, Koray Kavukcuoglu, and Clément Farabet. 2010. Convolutional

networks and applications in vision.. In Proceedings of IEEE International

Symposium on Circuits and Systems.

[35] Li, Guanpeng and Lu, Qining and Pattabiraman, Karthik. 2015. Fine-Grained Char-

acterization of Faults Causing Long Latency Crashes in Programs. In Proceedings

of the International Conference on Dependable Systems and Networks (DSN).

[36] Li, Guanpeng and Pattabiraman, Karthik and Cher, Chen-Yong and Bose, Pradip.

2016. Understanding Error Propagation in GPGPU Applications. In Proceedings

of the International Conference on High Performance Computing, Networking,

Storage and Analysis (SC).

[37] Lin, Min and Chen, Qiang and Yan, Shuicheng. 2013. Network in network. arXiv

preprint arXiv:1312.4400 (2013).

[38] Lu, Qining and Li, Guanpeng and Pattabiraman, Karthik and Gupta, Meeta S and

Rivers, Jude A. 2017. Configurable detection of SDC-causing errors in programs.

ACM Transactions on Embedded Computing Systems (TECS) 16, 3 (2017), 88.

[39] Neale, Adam, and Manoj Sachdev. 2016. Neutron Radiation Induced Soft Error

Rates for an Adjacent-ECC Protected SRAM in 28 nm CMOS. (2016).

[40] Oh, Nahmsuk, Philip P. Shirvani, and Edward J. McCluskey. 2002. Error detection

by duplicated instructions in super-scalar processors. IEEE Transactions on

Reliability (2002).

[41] Park, Seongwook, Kyeongryeol Bong, Dongjoo Shin, Jinmook Lee, Sungpill Choi,

and Hoi-Jun Yoo. [n. d.]. 4.6 A1. 93TOPS/W scalable deep learning/inference

processor with tetra-parallel MIMD architecture for big-data applications. In

International Solid-State Circuits Conference.

[42] Karthik Pattabiraman, Giancinto Paolo Saggese, Daniel Chen, Zbigniew Kalbar-

czyk, and Ravishankar Iyer. 2011. Automated derivation of application-specific

error detectors using dynamic analysis. IEEE Transactions on Dependable and

Secure Computing 8, 5 (2011), 640–655.

[43] Peemen, Maurice, Arnaud AA Setio, Bart Mesman, and Henk Corporaal. 2013.

Memory-centric accelerator design for convolutional neural networks. In IEEE

31st International Conference on Computer Design (ICCD).

[44] Piuri, Vincenzo. 2001. Analysis of fault tolerance in artificial neural networks.

J. Parallel and Distrib. Comput. (2001).

[45] Reagen, Brandon and Whatmough, Paul and Adolf, Robert and Rama, Saketh and

Lee, Hyunkwang and Lee, Sae Kyu and Hernández-Lobato, José Miguel and Wei,

Gu-Yeon and Brooks, David. 2016. Minerva: Enabling low-power, highly-accurate

deep neural network accelerators. In Proceedings of the International Symposium

on Computer Architecture (ISCA). 267–278.

[46] Reis, George A., Jonathan Chang, Neil Vachharajani, Ram Rangan, and David

I. August. 2005. SWIFT: Software implemented fault tolerance. In Preceedings

of the International Symposium on Code Generation and Optimization (CGO).

[47] Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang and others. 2015. Imagenet large scale visual recognition

challenge. International Journal of Computer Vision 115, 3 (2015), 211–252.

[48] Safety Standard 2016. ISO-26262: Road Vehicles Functional safety. (2016).

Retrieved Oct. 2016 from https://en.wikipedia.org/wiki/ISO_26262

[49] Sankaradas, Murugan, Venkata Jakkula, Srihari Cadambi, Srimat Chakradhar,

Igor Durdanovic, Eric Cosatto, and Hans Peter Graf. 2009. A massively parallel

coprocessor for convolutional neural networks. In IEEE International Conference

on Application-specific Systems, Architectures and Processors.

[50] Seifert, Norbert, Balkaran Gill, Shah Jahinuzzaman, Joseph Basile, Vinod

Ambrose, Quan Shi, Randy Allmon, and Arkady Bramnik. 2012. Soft error

susceptibilities of 22 nm tri-gate devices. (2012).

[51] Danny Shapiro. 2016. Introducing Xavier, the NVIDIA AI Supercomputer for

the Future of Autonomous Transportation. (2016). Retrieved Apr. 2017 from

https://blogs.nvidia.com/blog/2016/09/28/xavier/

[52] Simonyan, Karen, and Andrew Zisserman. 2014. Very deep convolutional

networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[53] Sriram, Vinay, David Cox, Kuen Hung Tsoi, and Wayne Luk. 2010. To-

wards an embedded biologically-inspired machine vision processor. In In

Field-Programmable Technology.

[54] Sullivan, Michael and Zimmer, Brian and Hari, Siva and Tsai, Timothy and

Keckler, Stephen W. 2016. An Analytical Model for Hardened Latch Selection

and Exploration. (2016).

[55] Olivier Temam. 2012. A defect-tolerant accelerator for emerging high-

performance applications. In Proceedings of the International Symposium on

Computer Architecture (ISCA). 356–367.

[56] Tiny-CNN [n. d.]. Tiny-CNN Framework. ([n. d.]). Retrieved Oct. 2016 from

https://github.com/nyanp/tiny-cnn

[57] Tithi, Jesmin Jahan, Neal C. Crago, and Joel S. Emer. 2014. Exploiting spatial

architectures for edit distance algorithms. In Proceedings of the International

Symposium on Performance Analysis of Systems and Software (ISPASS).

[58] TPU [n. d.]. Google supercharges machine learning tasks with TPU custom chip.

([n. d.]). Retrieved Oct. 2016 from https://cloudplatform.googleblog.com/2016/

05/Google-supercharges-machine-learning-tasks-with-custom-chip.html

[59] Wei, Jiesheng and Thomas, Anna and Li, Guanpeng and Pattabiraman, Karthik.

2014. Quantifying the accuracy of high-level fault injection techniques for

hardware faults. In Proceedings of the International Conference on Dependable

Systems and Networks (DSN).

[60] Yann LeCun. 2000. Deep Learning and the Future of AI. (2000). Retrieved Apr.

2017 from https://indico.cern.ch/event/510372/

[61] Zhang, Chen, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason

Cong. 2015. Optimizing FPGA-based accelerator design for deep convolutional

neural networks. In In Proceedings of ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays.

https://www.cs.toronto.edu/~kriz/cifar.html
https://code.google.com/p/cuda-convnet
http://www.iec.ch/functionalsafety/
http://image-net.org
https://en.wikipedia.org/wiki/ISO_26262
https://blogs.nvidia.com/blog/2016/09/28/xavier/
https://github.com/nyanp/tiny-cnn
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://indico.cern.ch/event/510372/

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Learning Neural Networks
	2.2 DNN Accelerator
	2.3 Consequences of Soft Errors

	3 Exploration of Design Space
	4 Experimental Setup
	4.1 Networks
	4.2 DNN Accelerators
	4.3 Fault Model
	4.4 Fault Injection Simulation
	4.5 Data Types
	4.6 Silent Data Corruption (SDC)
	4.7 FIT Rate Calculation

	5 Characterization Results
	5.1 Datapath Faults
	5.2 Buffer Faults: A Case Study on Eyeriss

	6 Mitigation of Error Propagation
	6.1 Implications to Resilient DNN Systems
	6.2 Symptom-based Error Detectors (SED)
	6.3 Selective Latch Hardening (SLH)

	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

