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Abstract—Emerging high-performance computing (HPC) sys-
tems show a tendency towards heterogeneous nodes that are
dense with accelerators such as GPUs. They offer higher com-
putational power at lower energy and cost than homogeneous
CPU-only nodes. While an accelerator-rich machine reduces the
total number of compute nodes required to achieve a performance
target, a single node becomes susceptible to accelerator failures as
well as sharing intra-node resources with many accelerators. Such
failures must be recovered by end-to-end resilience schemes such
as checkpoint-restart. However, preserving a large amount of
local state within accelerators for checkpointing incurs significant
overhead. This trend reveals a new challenge for the resilience
in accelerator-dense systems. We study its impact in multi-level
checkpointing systems and with burst buffers. We quantify the
system-level efficiency for resilience, sweeping the failure rate,
system scale, and GPU density. Our multi-level checkpoint-restart
model shows that the efficiency begins to drop at a 16:1 GPU-to-
CPU ratio in a 3.6 EFLOP system and a ratio of 64:1 degrades
overall system efficiency by 5%. Furthermore, we quantify the
system-level impact of possible design considerations for the
resilience in GPU-dense systems to mitigate this challenge.

I. INTRODUCTION

Future HPC systems may face scalability challenges be-

cause of resilience. Current end-to-end resilience schemes for

HPC rely on checkpoint-restart, which periodically preserves

a snapshot of application and/or system state such that any

fault can be tolerated by restarting the computation from

a previous snapshot (checkpoint). However, because global

I/O bandwidth (which is necessary for reliably preserving

and restoring checkpoints) scales more slowly than compute,

taking a checkpoint will require an increasing amount of

time as machines scale. At the same time, hardware faults

are generally proportional to system scale, necessitating more

frequent checkpoints in the future. This dual challenge hinders

efficient computing in time and energy at scale.

Multi-level checkpointing systems mitigate the exhaustive

global I/O activity due to checkpointing [1]. It exploits dif-

ferent storage media to create checkpoints; the rollback point

depends on the type of each specific failure. For example,

a checkpoint written to node-local main memory recovers

detectable but uncorrectable memory errors (DUEs) which are

relatively frequent. Meanwhile, rare but severe system-wide

power failures are handled by rolling back from more reliable

media such as the global file system. Multi-level checkpointing

systems, therefore, enable multi-tier checkpoints to have dif-

ferent optimal intervals depending on the likelihood of failures

for resilience. As a result, multi-level checkpoint reduces the
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Fig. 1. Illustration of bandwidth hot spots due to check-pointing in the systems
with different GPU density.

frequency of expensive global checkpoints, and it can avoid

I/O checkpointing burstiness.

Emerging HPC systems tend to be heterogeneous with dense

accelerators such as GPUs. A single device offers multi-

teraflop computation at lower energy and cost than CPU as

an effective accelerator for compute-intensive applications.

Systems with a high ratio of accelerators to CPUs offer multi-

exaflop performance at low node counts [2]–[4], however, the

large aggregated memory capacity of GPUs as well as host-

side state must be preserved as a part of global state.

Optimizing node-local resilience is important yet challeng-

ing with the trend of increasing heterogeneity in HPC systems.

GPUs are the most common example of such accelerators in

HPC. The high memory capacity of GPUs must be preserved

to the host along with the host-side state. However, bursty

GPU preservation traffic can slow down this node checkpoint

time.

We identify that accelerators introduce a severe problem for

the multi-level checkpointing systems at scale. The burstiness

of checkpointing traffic within an accelerator-dense node can

degrade the overall system performance significantly. At a

checkpoint, application state including all accelerators within

the node must be preserved, causing a burst of preservation

traffic such that every accelerator can utilize only a frac-

tion of the shared intra-node system bus and host memory.

Figure 1 illustrates the organization of an accelerator-dense

system and highlights the intra-node preservation bandwidth

as the primary performance limiter. Unlike with current

node-level checkpoint mechanisms, burstiness due to preserv-

ing accelerator-local state cannot be resolved by an intra-

accelerator copy because this device-local memory is typically

heavily utilized. This leads to the host-accelerator preservation

bandwidth as being a key parameter for the efficiency of a
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resilient accelerator-dense system.

We quantify the effect of the bursty GPU preservation traffic

on future multi-exaflop, multi-level checkpointing systems and

with burst buffers while scaling GPU density. A multi-level

checkpoint model shows that a high ratio of GPUs per CPU

within a node will degrade throughput by 5—10% when

projecting current HPC trends. The failure rates and system

hierarchy in such a system at scale limit the high system-level

efficiency for resilience in multi-level checkpointing systems.

For example, we show that a projected multi-exaflop GPU-

dense system with more than 8 GPUs per CPU will perform

10% worse than a system that does not face the burstiness

problem.

We discuss possible design considerations to mitigate the

bursty system bus accesses for preserving the accelerator state.

First, a high-speed interconnect such as NVLink reduces the

checkpoint traffic burst. Second, enhancing the reliability of

the accelerator device allows for longer checkpoint intervals.

We quantify and discuss these system design options for GPU-

dense systems.

II. BACKGROUND

A. Accelerators in Supercomputers

The total cost of ownership (TCO) is a critical concern

in terms of acquiring and maintaining large-scale systems.

Accelerator-dense systems generally require fewer nodes to

meet performance goals, offering high energy efficiency and

low acquisition costs that considerably improve TCO. Table I

shows the energy efficiency of accelerators adopted by the

current top 10 supercomputers. It demonstrates that it is

more cost-effective to use accelerators to compose a machine

with a certain performance target than a CPU-only system.

Accordingly, many current supercomputers are heterogeneous,

and the ratio of accelerators to CPUs continues to grow. For

example, each compute node of Coral Summit system includes

3 GPUs per CPU.

TABLE I
Comparison of performance and power consumption of accelerators.

Computer Type Xeon E5 KNL V100 PEZY
Performance [TFLOP] 0.211 3.05 7.83 4.1
Power [Watt] 145 215 300 130
Perf/Watt [GFLOP/W] 1.46 9.53 26.1 31.54

B. Detectable Uncorrectable Errors (DUEs) in GPU Memory

GPU memory uses weaker memory protection than CPU

memory in order to meet the demand of high memory

bandwidth needed for the massive thread-level parallelism.

GPU memory such as HBM2 has many channels where each

channel performs 32B accesses to a DRAM die. Because

a single die participates in a memory transfer, chipkill-like

error correction codes (ECC) are not currently feasible for

GPU memory; therefore, current GPU memory is protected

with single-bit error correcting and double-bit error detecting

(SECDED) ECC. As GPU density increases, GPU failure

(primarily due to memory DUEs) is by far the most frequent

failure mode as projected in Figure 2. Due to their smaller total

system size, GPU-dense systems tend to have lower overall

failure rates. However, as we show later, the limited and shared

intra-node system bus and host memory can potentially limit

system efficiency in highly GPU-dense systems.

C. Globally Coordinated Checkpoint-Restart

Globally coordinated checkpoint-restart is the most practical

resilience mechanism in HPC systems. All distributed nodes

coordinate to identify globally consistent state across the

application; typically at a global collective operation such

as a barrier. The global coordination ensures no in-flight

messages that potentially cause an inconsistent state while

checkpointing, and the snapshot of the global state is preserved

to reliable storage. When any failure occurs, the application

restarts from the last preserved state (checkpoint) such that it

can continue to execute correctly to completion, or until the

next failure. Global checkpoint restart is simple but effective

resilience scheme in the system where the mean time between

failures (MTBF) is much longer than the checkpoint time.

MTBF and checkpoint time determines the optimal check-

point interval and system-level efficiency for resilience. How-

ever, MTBF decreases as system scale grows, requiring more

frequent checkpoints to reduce rollback loss. At the same time,

when a large-scale application checkpoints, a large number of

nodes may attempt to simultaneously write their large state to a

bandwidth-constrained global file system. Such checkpointing

traffic bursts expand the checkpoint time and degrade system

utilization.

D. Burst Buffers for Checkpointing Systems

A burst buffer is a network-attached I/O appliance that

lessens the concern of bursty disk accesses in large HPC

systems [5]. It leverages an intermediate I/O layer between

the compute and I/O nodes to better manage global disk

bandwidth. This new tier of storage operates as a temporary

buffer which absorbs surges in global I/O activity. Burst

buffers allow compute nodes to continue executing while files

written to the burst buffer are asynchronously flushed to the

global file system. The burst buffer scales with compute nodes

and transparently accelerates global I/O. Alternatively, instead

of a remotely shared burst buffer, some HPC clusters, such as

Coral Summit, utilize node-local disks as a burst buffer [6].

Furthermore, Agrawal et al. propose to exploit node-local non-

volatile memory with a hardware controller that is capable of

trickling memory-level checkpoints from node-local cores to

global disk [7].

E. Multi-Level Checkpoint and Restart

Multi-level checkpoint and restart [8] mitigates frequent

bursty I/O accesses by efficiently utilizing the bandwidth at

each level of the storage hierarchy. Checkpointing to node-

local storage such as local disk or memory is fast and it can

tolerate intra-node failures but it is not capable of handling

rare-yet-severe global failures. Multi-level checkpoint-restart
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TABLE II
Configuration of a single node in the base system organization.

Base Node Configurations

Perf/CPU [TFLOP] 0.384
Perf/GPU [TFLOP] 7.8
CPU/Node 2
Core/CPU 24
Memory/CPU [GB] 256
Core/GPU 5120
Memory/GPU [GB] 32
SSD BW/Node [GB/s] 2.15
Total PFS BW [GB/s] 2500
PCIe/CPU [GB/s, unidirectional] 64
Node/Cabinet 18

improves overall system-level efficiency by optimizing the

checkpoint interval for each level of storage based on the

bandwidth and failure rate associated with that level. We

quantify the importance of memory-level checkpointing to

the performance efficiency of the checkpointing system in

Section V.

III. STUDY OF FAILURE RATES AT SCALE

A. Projecting System Configuration

We project our base system configuration inspired by Coral

Summit, a leadership-class computing system at Oak Ridge

National Laboratory (ORNL) [2], [9]. The system organization

details such as CPU, GPU and GPU density are projected for

the Power9 CPU, V100 GPU, and different GPU densities

as summarized in Table II. Note that our baseline system is

not exactly the same as Coral Summit—for example, Summit

has 3 GPUs per CPU, 16GB of GPU memory and NVLink2

between GPUs and CPU.

We scale the GPU density along with the number of cabinets

to grow the system. We limit each CPU to 32 PCIe 4.0 lanes,

with GPU density scaling provided by switches, if necessary.

Figure 3 shows the trend of storage bandwidth and node count

in two different system configurations at scale. The aggregated

Fig. 2. Mean time to failure (MTTF) of homogeneous and heterogeneous
systems with GPUs as the system scale increases.

Fig. 3. Storage bandwidth trends for homogeneous and heterogeneous systems
with increasing system scales.

CPU, system bus and local disk bandwidths are significantly

higher in the CPU-only system than in the system with 4

GPUs per CPU because of node count. To achieve the same

compute power, the system without GPUs requires 84X more

nodes than the system with 4 GPUs per CPU. We also scale

the global file system bandwidth by a factor of 1.3 for every

doubling of aggregate system performance, based on rough

trends from planned large-scale system upgrades (Edison-to-

Cori at NERSC [10], [11], Titan-to-Summit at OLCF [9], and

MIRA-to-Aurora at ALCF [12]).

B. Failures of Heterogeneous Systems at Scale

Our system performance model accounts for not only for

the multi-level checkpoint latency but also for the rollback

loss associated with failures. We therefore estimate and project

failure rates for the GPU-dense nodes and other system com-

ponents. We use published information on large-scale HPC

systems to derive scaling and baseline reliability parameters

for our model. Specifically, we use statistics gathered from

261 days on the Blue Waters supercomputer [13], projecting

the same per-component failure rates for our Summit-inspired

Fig. 4. MTTF at the scale of GPU density at 3.6 EFLOP system.
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Fig. 5. Performance efficiency vs. system scale and GPU density in the
single-level global checkpointing system with burst buffers. The lack of
memory-level checkpoint hinders efficient resilience at scale.

Fig. 6. Performance efficiency of the three-level checkpointing system; the
lower effective per-accelerator checkpointing bandwidth degrades efficiency
as accelerator density (lines) and node count (x-axis) increase.

systems as measured on Blue Waters. We also combine per-

chip memory failure rates based on field measurement study

in Titan [14]. For GPU failure statistics, we use 144, 178

and 98 hours for the MTTFs of double-bit error, ECC page

retirement, and off-the-bus errors, respectively. The field study

of failures in Titan reports that identifying bad GPU cards

and resolving their integration issue significantly lowers the

off-the-bus failures. Note that we use the off-the-bus MTTF

number after resolving faulty GPU devices.

These GPU failure rates are projected to our baseline system

inspired by Coral Summit. The system-level failure rate in our

study is lower than in prior work. For example, the total failure

rate of our 0.9 EFLOP machine is 1.34E-04 (2-hour mean time

between interrupts), while that of the 1 EFLOP machine in the

previous work [15] is 5.56E-04–4.15 times higher. The main

reason for our lower failure rates is the more realistic GPU-

dense machine organization we consider: Summit-like nodes

with tens or hundreds of teraflops per node allow exascale

systems with fewer than 1
27 the number of nodes used in prior

work [15], [16].

In the CPU-only system, the large number of compute

nodes leads to frequent node failures. Multi-cabinet failures

are considered as system-wide global failures which need to

be recovered from global disk while they still scale with the

number of nodes. The global failure rate also includes envi-

ronmental failures such as power failures which do not scale

along with the node count. Heterogeneous systems with GPUs

increase the MTTF by reducing the node count for a given

performance target. GPU failures dominate the overall failures

in heterogeneous systems. However, the reduced number of

compute nodes with GPUs improves total failure rates at scale.

Figure 4 shows the MTTF of each system component at

different GPU-to-CPU ratios in a 3.6 EFLOP system. We

scale the GPUs per CPU from 0 to 128. The CPU-only

system at 3.6 EFLOP (zero GPU per CPU) shows very low

MTTF because of the required large node count. While the

GPU MTTF remains the same at different GPU densities in

the system, the MTTFs of the other failure types gradually

increase along with GPU density. This is because the total

GPU count in the system remains constant with scaling the

density of GPUs which mainly contribute to the performance

target (3.6 EFLOP). As GPU density increases, however, the

total cabinet count decreases for the same EFLOP, which

reduces the node and/or system-wide failures.

IV. STUDY OF PERFORMANCE EFFICIENCY AT SCALE

Figure 5 and Figure 6 demonstrate the problem of GPU

checkpoint traffic bursts within the node when modeling state-

of-the-art multi-level checkpointing for GPU-dense exascale

systems based on the future Coral Summit supercomputer

at ORNL [17]. We estimate the performance efficiency—the

ratio between the execution time of the application without

any resilience mechanisms without failures and the total time

including checkpoint-restart—based on two kinds of system:

a single-level global checkpointing with burst buffers and a

three-level checkpointing system.

A. Checkpointing GPU-Dense System with Burst Buffers

Though the system with burst buffers utilizes node-local

or remote non-volatile storage like the second storage tier of

the three-level checkpointing system, global checkpoints are

written to the burst buffer, then asynchronously trickled down

to the global file system. Since there is not yet any public burst

buffer component failure data, we estimate the efficiency with

the same analytical model assuming no burst buffer failures.

Even though the efficiency of the system with burst buffers is

optimistically estimated with this assumption, such a system

still suffers from significant efficiency drop as shown in Fig-

ure 5. First, this is because the node checkpoint time that scales

along with the node counts is not still sufficiently fast for

high failure rates at scale, which eventually increases rollback

loss at optimal checkpoint intervals. Second, a high GPU:CPU

ratio reduces the node counts at the same performance target.

However, high GPU density increases node checkpoint time

due to limited node-local storage bandwidth (2.15 GB/s in our

target system). Note that the aggregated burst buffer bandwidth

is proportional to the node count. Thus, the checkpointing

system without memory-level checkpoint increases checkpoint

time and degrades the system-level efficiency significantly at

scale.
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Fig. 7. Limits on the performance efficiency of accelerator-dense multi-level
checkpointing. Improving the memory-level checkpoint bandwidth is the most
effective option.

B. Multi-Level Checkpointing System with GPUs

Figure 6 demonstrates the effect of a memory-level check-

point congestion due to GPU checkpoint traffic bursts within

the node of the three-level checkpointing system. This or-

ganization resembles Scalable Checkpoint Restart [1] on a

scaled up version of Summit, which is likely to be the

highest performing checkpointing solution supported on that

machine [9]. Our second checkpoint tier is located in node-

local NVMe SSD storage [18]. We find multi-level checkpoint-

ing to be promising yet insufficient to meet the checkpoint-

restart efficiency goals. The overhead of checkpointing the

GPUs significantly degrades overall system performance at

GPU densities greater than 8:1, in particular for very large-

scale systems.

Using optimal checkpoint intervals from a multi-level

checkpoint model [17], the fast memory-level checkpoint can

have a short interval to reduce rollback distance on memory-

level errors. However multi-level checkpoints, alone, are in-

sufficient for providing high efficiency for large-scale GPU-

rich systems. Figure 7 shows the efficiency of a three-level

checkpoint in a 16 GPUs/CPU node with infinite intra-node

preservation bandwidth, infinite local disk bandwidth, and

both. This analysis shows that quickly storing GPU data to host

memory is by far the most effective approach for regaining

system performance.

V. MITIGATING BURSTY GPU PRESERVATION

A. High-Speed GPU–CPU Interconnect.

All accelerators within the node share the host memory and

interconnect bandwidth. Because the maximum GPU—CPU

transfer rate in our target system configuration depends on

the limited interconnect bandwidth, a high-speed link such as

NVLink2 or a wide PCIe bus can reduce the memory-level

checkpoint time to improve the overall system-level efficiency

in the multi-level checkpointing systems. We study the effect

of interconnect bandwidth between GPUs and CPU to overall

system performance efficiency.

Figure 8 shows the projected system-level efficiency at

different system bus bandwidths at scale. NVLink offers

Fig. 8. The system-level efficiency as the system bus bandwidth grows. X1
represents the system bus bandwidth of our baseline system.

150GB/s for each CPU1, improving the performance efficiency

by 1.4% at 3.6 EFLOP. Higher GPU–CPU copy bandwidth

fundamentally resolves the congestion due to bursty intercon-

nect activity for preserving GPU state, but scaling past host

DRAM bandwidth speeds will make the system memory the

bottleneck unless both are improved. We show that the 170

GB/s DRAM bandwidth of our Summit-like node offers only

slightly better efficiency than NVLink interconnect speeds.

B. Sensitivity Study of GPU failure rate.

Reliable GPU devices enable longer memory-level check-

point intervals, improving the overall system-level efficiency.

We study the impact of GPU failure rates on the resilience

of the three-level checkpointing system. Figure 9 shows the

performance efficiency of a three-level checkpointing system

at 3.6 exaflops with 4, 16, and 64 GPUs per CPU. The

efficiency of three-level checkpointing with 64 GPUs per CPU

is sensitive to GPU failure rates, decreasing to less than 35%

at 50X rates. However, 4 GPUs per CPU sustain 60% in

performance efficiency at highly-scaled GPU failure rates.

On the other hand, 0.1X GPU failure rates allows multi-

level checkpoint to achieve 90% efficiency for the 3.6 exaflop

system. This implies that reliable GPU devices allows the use

1We use the same NVLink configuration as an IBM Power9 CPU—6 bricks
of NVLink2 at 25GB/s unidirectional bandwidth per brick [19].

Fig. 9. GPU FIT scaling and efficiency in multi-level check-pointing system
with 3.6 EFLOP, 16 GPUs per CPU configuration.
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of high GPU density for the performance efficiency target.

This is desirable, since a high GPU density considerably

reduces the node count and system TCO.

VI. RELATED WORK

Checkpointing accelerator state is becoming important as

accelerators increase in popularity for HPC. Recent accel-

erators such as GPUs have large memories and retain data

in those memories for long periods without saving it to the

CPU host. Therefore, including GPU memory state in the

globally-coordinated checkpoints is essential. With the preva-

lence of GPUs, checkpointing systems for CUDA applications

are being explored [20]–[22]. Checkpoint-restart for GPUs

preserves the state of a CUDA program which is comprised

of two component. The first component is a host-side state,

such as driver memory, and open files and sockets, which the

host checkpointing system preserves. The second component

is the state within the GPU device memory that is required

to correctly restart the application. The prototypes for GPU

checkpoint-restart demonstrate both the feasibility of check-

pointing GPU state and they identify the major checkpoint

overhead, which is transferring data from the GPU to the host.

We further characterize this overhead across a broad range of

future system organizations and failure rates.

VII. CONCLUSION

We find the potential problem of multi-level checkpoint

and restart model to be employed in GPU-dense system

and quantify the effect of bursty GPU preservation on the

system-level efficiency. We find aggressive checkpoint-restart

strategies such as burst buffers or multi-level checkpoint to

be promising yet insufficient to meet the checkpoint-restart

efficiency goals for GPU-dense systems. The overheads of

checkpointing the GPUs significantly degrade overall system

performance at the densities greater than 8:1, in particular at

very large system scales. Our analysis, discussed in Section V,

shows that quickly storing GPU checkpointing data to its host

CPU memory and enhancing GPU reliability can effectively

regain any lost system performance.
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