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Abstract

Future High-Performance Computing (HPC) systems will likely
be composed of accelerator-dense heterogeneous computers be-
cause accelerators are able to deliver higher performance at lower
costs, socket counts and energy consumption. Such accelerator-
dense nodes pose a reliability challenge because preserving a large
amount of state within accelerators for checkpointing incurs sig-
nificant overhead. Checkpointing multiple accelerators at the same
time, which is necessary to obtain a consistent coordinated check-
point, overwhelms the host interconnect, memory and IO band-
widths. We propose GPU Snapshot to mitigate this issue by: (1)
enabling a fast logical snapshot to be taken, while actual check-
pointed state is transferred asynchronously to alleviate bandwidth
hot spots; (2) using incremental checkpoints that reduce the volume
of data transferred; and (3) checkpoint offloading to limit accelerator
complexity and effectively utilize the host. As a concrete example,
we describe and evaluate the design tradeoffs of GPU Snapshot
in the context of a GPU-dense multi-exascale HPC system. We
demonstrate 4-40X checkpoint overhead reductions at the node
level, which enables a system with GPU Snapshot to approach the
performance of a system with idealized GPU checkpointing.
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1 Introduction

We identify and mitigate a new challenge in the use of accelerator-
dense systems for high-performance computing (HPC): the prob-
lem that preserving a coordinated, consistent checkpoint of an
accelerator-dense node overwhelms intra-node memory bandwidth,
degrading overall performance significantly. This is important be-
cause accelerator-dense systems [14, 37, 41, 45, 53]—systems with
a high ratio of accelerators to CPUs—offer an attractive and afford-
able path to very high (multi-exaflop) performance, yet the high
memory capacity of the accelerators must be preserved as part of
the overall end-to-end resilience scheme.

State-of-the-art resilience schemes for HPC quickly duplicate
node memory to fast-but-not-fully-reliable storage [7, 28, 31]; some
of these checkpoints are later transferred to a global reliable medium.
Accelerators introduce a severe problem for this hierarchical scheme.
At each node checkpoint time, application state within the large
memories of all accelerators within the node must be preserved,
causing a burst of preservation traffic such that every accelerator
can utilize only a fraction of the shared intra-node communication
(e.g., PCIe or NVLink), host memory, and for some schemes also IO
bandwidths. Figure 1 illustrates the organization of an accelerator-
dense system, highlighting the intra-node preservation bandwidth
as the main performance limiter. Unlike with current node-level
checkpoint mechanisms, preservation burstiness cannot be resolved
by an intra-accelerator copy because that memory is typically heav-
ily utilized, and an additional storage layer cannot be added as with
burst buffers for CPU memory [28].

We show that this burstiness problem will cost precious system
performance for future multi-exaflop, GPU-dense HPC systems,
degrading throughput by 5—10% when projecting current HPC
trends. We therefore develop GPU Snapshot, a host-accelerator
HW/SW cooperative mechanism to reduce the time required to
preserve accelerator memory contents during checkpoint. GPU
Snapshot addresses the burstiness challenge by optimizing the use
of the tightly-constrained host—accelerator interconnect while min-
imizing interruptions to both the host and accelerators. Note that
this is a significant challenge as the aggregate capacity of acceler-
ator memories is large and optimized programs avoid the frequent
transfer of accelerator data to host memory because of the large
discrepancy between the bandwidth within the accelerator and the
host-accelerator interconnect.

At a high level, GPU Snapshot enables the incremental and non-
blocking preservation of accelerator memory to reduce the check-
point volume and to overlap checkpointing with continued GPU
execution. GPU Snapshot allows for a very fast logical snapshot
to be marked with the state corresponding to that snapshot then
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Figure 1: Illustration of bandwidth hot spots due to check-
pointing in CPU-only and GPU-dense system.

asynchronously preserved to host memory. The snapshot must be
logical because accelerator memory is typically highly utilized with
insufficient capacity to duplicate data within the accelerator. Asyn-
chronous non-blocking preservation is necessary to “spread out”
the transfer of the data to the host without causing traffic bursts.

GPU Snapshot introduces the notion of checkpoint offloading, and
we architect the mechanisms and interfaces necessary for enabling
this offloading. With checkpoint offloading, the data preservation
part of the checkpointing operation and its progress are not han-
dled by the accelerator being checkpointed; rather in our case this
is handled by the host CPU. On the GPU device, GPU Snapshot
introduces new, low-cost hardware to track which memory regions
need to be transferred and those that have already been transferred,
possibly at a different granularity from the virtual memory system.
This is important for accelerators that use coarse-grained address
translation compared to the granularity at which data is written.
Furthermore, this GPU Snapshot hardware optimizes how the host
and the accelerator communicate to identify which regions have
been safely preserved. Such offloading has not been necessary for
CPUs, but we demonstrate its importance for accelerators.

Once a low-overhead accelerator snapshot has been stored to
the host memory, state-of-the-art global checkpoint approaches,
such as Scalable Checkpoint Restart [31] or burst buffers [7], can
perform an effective and efficient global checkpoint across all nodes.
We model these mechanisms in our evaluation but do not discuss
them in detail as GPU Snapshot interacts similarly with any global
recovery scheme. We emphasize that such mechanisms cannot be
used directly by accelerators because of the inability to duplicate
data within accelerator memory.

To summarize, we make the following main contributions:

o We identify that the burstiness of checkpointing traffic within an
accelerator-dense node can degrade overall system performance
significantly. For example, we show that a projected multi-exaflop
GPU-dense system with more than 8 GPUs per CPU will perform
8% worse than a system that does not face the burstiness problem
(Section 3).

e We develop GPU Snapshot hardware for logical snapshots fol-
lowed by the asynchronous preservation of each snapshot to the
host, overcoming the burstiness issue (Section 4).

o We introduce checkpoint offloading, which in our case allows the
host to effectively perform the checkpoint while the accelera-
tor continues its execution; we also discuss generalizations of
this idea. In the case of GPU checkpointing, offloading is impor-
tant because it does not require the GPU itself to perform IO
operations (Section 4.1).
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e We use a suite of HPC CUDA applications to demonstrate that
GPU Snapshot reduces checkpoint overheads by 4 — 40x and
comes within 3% of the performance of a system with idealized
GPU checkpointing in all but two applications studied; these two
outliers are still within ~5% of the ideal performance (Section 6).

2 Background
2.1 Globally-Coordinated Checkpointing

Globally-coordinated checkpoint-restart is the most practical
general error recovery mechanism. With global checkpoint-restart,
all nodes that are running a particular application coordinate to
quiesce to a consistent state, typically using a global barrier. After
coordination, the globally-consistent program state is preserved to
reliable storage. When a processor, node, or system failure occurs,
the previous checkpoint is reloaded, the application is restarted,
and error-free execution continues. So long as the time to take and
restart a checkpoint is much smaller than the mean time between
failures (MTBF), global checkpoint restart is very effective. Thus,
an important objective of any checkpoint-restart system is to keep
checkpoint times short.

One challenge with global checkpointing is that the checkpoint
must be taken precisely after the globally-coordinated consistent
state is established. When a large-scale application checkpoints,
many nodes may attempt to simultaneously write their large check-
points to a bandwidth-constrained global file system. Such check-
pointing traffic bursts expand the checkpoint time and degrade
system efficiency. While the global bandwidth is not sufficient for
managing the traffic burst, the long interval between checkpoints
provides for ample time to store the state of all the application pro-
cesses. Hence, state-of-the-art checkpointing systems aim to spread
the storing of checkpointing data from different nodes across the
checkpointing interval.

There are two main ways this is achieved. The first is through
distributed checkpointing protocols (e.g., [5, 13]), which are not
common in practice. The second is to still globally coordinate a
single checkpoint across nodes, but quickly store this checkpoint
to fast, though less reliable, storage. This storage may consist of
a node’s own memory [31, 58], a local SSD [1], a fast network-
attached remote SSD known as a burst buffer 7, 44], or even the
memory of other nodes [31]. All of these systems mitigate the
checkpointing-burst problem, with in-memory checkpointing of-
fering the highest potential performance.

In addition to hiding the long checkpoint time required to write
data to a reliable global file system, approaches have also been de-
veloped to reduce the volume that must be preserved. Two notable
examples are: (1) incremental checkpointing, which only stores
data that has been modified since the previous checkpoint [2, 4, 16,
18, 29, 39, 52, 55, 56]; and (2) compressing checkpointed data before
writing a checkpoint [22, 23, 43].

2.2 Checkpoint-Restart with GPUs

As accelerators increase in popularity for large-scale computing,
checkpointing accelerator state becomes important. While some ac-
celerators have little state and any computation on the accelerator
can be restarted from a CPU memory checkpoint, accelerators such
as GPUs have large memories and retain data in those memories
for long periods without saving it to the CPU host. As such, it is
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Figure 2: Performance efficiency vs. system scale and GPU
density; the lower effective per-accelerator checkpointing
bandwidth degrades efficiency as accelerator density (lines)
and node count (x-axis) increase. Performance efficiency
is the ratio between the execution time of the application
without any resilience mechanisms and no failures and the
total time including checkpoint and restart.

critical to include GPU memory state in the globally-coordinated
checkpoints. With the prevalence of GPUs, checkpointing systems
for CUDA applications are being explored [15, 35, 48]. The state
of a CUDA program consists of two components. The first com-
ponent is host-side state, such as driver memory, and open files
and sockets, which are preserved by the CPU checkpointing sys-
tem. The second component is the state within the GPU device
memory that is required to correctly restart the application. CUDA
checkpoint-restart prototypes demonstrate both the feasibility of
checkpointing GPU state and that the majority of checkpointing
time is from transferring data from the GPU to the host.

3 Motivation: Bursty GPU Preservation

We identify a new challenge with checkpointing multi-GPU
CUDA programs on GPU-dense systems (and accelerator-dense
systems by extension). This challenge is similar in nature to the
checkpointing traffic burst problem discussed above for global IO,
but within an accelerator-dense node. When a checkpoint is globally
coordinated, all accelerator memory state must be transferred to
the host CPU and then included in the global checkpoint. The host
memory and interconnect bandwidth, however, are shared by all
accelerators within the node such that each observes only a fraction
of the total bandwidth while transferring its data to the host. Unlike
the CPU-oriented checkpointing systems described earlier, the GPU
does not have enough capacity to feasibly duplicate data within its
memory. At the same time, even burst-buffer nodes cannot easily
and economically support the burst of data from a GPU-dense node.

While distributed checkpointing systems have been demonstrated
for two-sided MPI programs on CPUs, GPUs present challenges that
make distributed checkpointing of GPU state prohibitively expen-
sive. Current CUDA programming systems and GPU devices sup-
port a shared and coherent address space across the entire heteroge-
neous node through uniform virtual memory (UVM) [17, 36], where
GPUs may communicate with the host CPUs or other GPUs in a
one-sided manner. Handling such unstructured communication for
distributed checkpointing requires a fine-grained, high-bandwidth,
and high-capacity message logging infrastructure [6] that tracks
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Figure 3: Limits on the performance efficiency of

accelerator-dense checkpointing; improving memory-level

checkpointing is the most effective option.

remote memory accesses to or from each GPU in order to locally re-
cover from errors; such infrastructure does not exist and developing
it would require significant research and resources. Thus, enabling
efficient global checkpoints for GPU-dense systems is important.
To demonstrate the problem of GPU checkpoint traffic bursts,
we model state-of-the-art multi-level checkpointing for GPU-dense
exascale systems using the methodology described in Sections 5.2
and 5.3. Figure 2 shows the efficiency of three-level checkpoint with
optimal intervals, finding multi-level checkpointing to be promising
yet insufficient at exascale. This organization resembles Scalable
Checkpoint Restart [31] on a scaled-up version of the Coral Summit
supercomputer with 3:1 GPU-to-CPU ratio at Oak Ridge National
Laboratory [53]. (Scalable Checkpoint Restart is likely to be the
highest performing checkpointing solution supported on the ma-
chine [60].) Our second checkpoint tier is located in node-local
NVMe SSD storage [42]. Summit can also use NVMe storage in a
burst buffer organization [60], but we leave the detailed analysis
of this alternate organization for future work. The overhead of
checkpointing the GPUs degrades overall system performance at
densities of 8-to-1 and greater, in particular for very large-scale
systems. Figure 3 shows the efficiency of three-level checkpoint in
a 16 GPUs/CPU node with infinite intra-node preservation band-
width, infinite local disk bandwidth, and both. This analysis shows
that quickly storing GPU data to host memory is by far the most
effective approach for regaining system performance. We develop
GPU Snapshot for this purpose, and explain its operation below.

4 GPU Snapshot

Before detailing the various components, mechanisms, and op-
timizations we develop for GPU Snapshot, we first provide an
overview of how GPU Snapshot is used and how its major com-
ponents interact. GPU Snapshot includes three major components.
First, the GPU driver running on the host manages host memory as
a checkpoint space for the GPUs. Second, a memory-zone monitor
(MZM) is integrated into each GPU memory channel controller and
manages a (cached) table to track which physical memory zones are
written to by the GPU (a zone is a set of contiguous per memory-
channel physical addresses). Third, to improve the performance
of GPU Snapshot, buffers and additional optimizations are also
included.
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There are several steps to using GPU Snapshot as illustrated in
Figure 4. The driver allocates memory on the host for a preser-
vation buffer as well as for metadata that associates preserved
data with its original GPU physical address. The driver also allo-
cates space in device memory for tracking the state of the memory
zones. This memory zone table (MZT) is partitioned across memory
channels. At a globally-coordinated time, the host CPU initi-
ates GPU Snapshot through the GPU driver. Coordination within
a node entails synchronizing all GPUs in the node to complete
currently running kernels and flushing all GPU caches. This intra-
node synchronization is needed due to the difficulty of (and lack
of driver support for) checkpoints during kernel execution. Such
synchronization is also needed for other multi-GPU checkpointing
approaches, and it can be overlapped with the global inter-node bar-
rier when bringing the system to a quiescent state [15]. We do not
focus on synchronization as a source of overheads in our evaluation
because it is common to all current GPU checkpointing approaches.
The snapshot of current GPU memory state is logically recorded

without yet transferring the data. GPU Snapshot proceeds with
transferring snapshot data for the checkpoint from each GPU to
the preservation buffer in the CPU. This is done using checkpoint
offloading such that immediately following the snapshot (step ),
the GPU can resume normal execution. The GPU state preserved
to the host becomes part of the global application state, which is
later preserved in the host-local or burst buffer storage system.
Checkpoint offloading proceeds with transferring the snapshot
state to include in the node’s checkpoint while the memory zone
monitor (MZM) prevents now-executing kernels from overwriting
snapshot state before it has been transferred to the host. This uses
the MZT, which collects information on memory zones that are
being modified such that an incremental checkpoint can be created
at the next coordinated checkpoint time.

We first describe the checkpoint offload mechanism for non-
blocking asynchronous GPU checkpointing (Section 4.1), as well
as incremental checkpointing to reduce checkpointing volume (Sec-
tion 4.2). We then discuss how additional hardware can mitigate
some of the overheads associated with the driver and host-GPU
communication (Section 4.3).

4.1 Checkpoint Offloading

State-of-the-art checkpointing systems for CPUs [7, 10, 31, 34]
start by quickly duplicating memory to node-local memory or stor-
age to allow the processor to continue executing while the check-
point is transferred to more reliable media over a period of time
(possibly until the next checkpoint is taken). This process is gener-
ally done by the CPU itself, with the responsibility of moving data
across IO possibly relegated to a peripheral device [1]. This idea of
duplicating memory to allow execution to continue is very effective
at curbing checkpoint time. However, it is not directly applicable
to GPU-dense systems; as we have explained earlier, there is insuf-
ficient memory in the GPU for duplicating state. Thus, our goal is
to overlap GPU computation with transferring checkpointed data
to CPU memory while avoiding expensive preservation bursts.

GPU Snapshot achieves this goal with two basic ideas: (1) en-
abling “live” memory to be used for temporarily storing checkpoint
data until it is drained to CPU memory; and (2) enabling the ef-
fective management of this process by the CPU rather than the
compute entity itself. These ideas require two key system mecha-
nisms for their implementation. First, the GPU must identify writes
to the part of the checkpointed memory that has not yet been
copied to host memory and block those writes from modifying
memory until the data has been transferred or duplicated. Second,
checkpoint progress must be tracked to ensure that blocked writes
are allowed to resume in a timely manner. We explain how GPU
Snapshot implements these mechanisms below.
4.1.1 Offloading with Virtual Memory In a CPU-based sys-
tem, virtual memory with the copy-on-write (CoW) approach can
provide the mechanisms above. With CoW, all to-be-checkpointed
virtual memory pages are marked as read-only at the initial snap-
shot time. When a store is issued to such a page, an exception is
raised that “splits” the page by duplicating it such that one copy
can be used for continued execution and the other for transferring
checkpoint data. This is similar to the concept of virtual machine
live migration [9, 20, 54]. However, the GPU virtual memory sys-
tem cannot be used effectively for the same purpose because of
four main reasons. First, GPUs (and most other accelerators) are
designed for massive parallelism and throughput-computing and
do not support efficient exception handling [26, 46, 49] for memory
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snapshot. Second, GPU memory (and again, that of accelerators
in general) is managed by the host CPU to ensure a consistent
mapping and enable effective DMAs and shared address spaces.
Third, the coverage for dirty tracking is very limited with GPU L1
TLBs due to many-bit translations stored in the limited capacity and
there is overlap among per-SM TLBs. Lastly, updating checkpoint
progress either requires expensive TLB shootdowns or ends up with
redundant preservation due to inconsistent updates. Hence, just-
in-time duplication like CoW has very high latency. We find that
GPU Snapshot cannot be implemented using virtual memory and
that the progress rate is too low while a checkpoint is processed.

4.1.2 Offloading with Memory Zone Monitoring We develop
anew architecture that is specially designed to enabling checkpoint
offloading in GPUs. The core of this architecture is the memory
zone monitor (MZM). The MZM is not intended to replicate the
capabilities of virtual memory. In fact, the MZM operates with phys-
ical addresses at the memory channel level because accelerators’
physical memory state is being checkpointed. The MZM maintains
information about physical memory zones, where each zone is a
contiguous region of intra-channel physical addresses. We refer to
zones rather than pages or frames to clarify that zones need not
be at the same granularity used for virtual memory and because
addresses are contiguous within a channel even though physical
addresses are interleaved across channels.

The MZM architecture has two components. The first is the Mem-
ory Zone Table (MZT), which maintains the preservation status of
zones; it is logically shared by the host and the device (Figure 5).
The second component is the MZM hardware, which is integrated
with the memory controllers and uses the MZT information to stall
write operations that would otherwise prematurely modify GPU
memory state.

4.1.3 Memory Zone Table and Offloading Coordination

When a checkpoint operation begins with a snapshot, the MZT
contains which memory zones need to be transferred to the host.
The driver can set up the table by updating the GPU memory lo-
cations that correspond to the MZT. Alternatively, we discuss later
how the MZM hardware can keep the table up-to-date with only
those regions that have been modified since the previous check-
point to enable incremental checkpointing. As the checkpoint
offloader copies GPU memory to the host, it updates the shared
MZT. If the offloader is managed by the driver on the host, updating
the MZT requires communication over PCle (or NVLink), which
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incurs high latency. @ It is therefore desirable for the driver to
only periodically update the checkpointing progress. The MZT is
conservative by nature—only zones that are guaranteed to have
been copied to the host are marked as safe for memory writes.
Updating the MZT status during checkpoint offloading can thus
be considered a performance-improving hint. We evaluate the per-
formance impact of this tradeoff and demonstrate that providing
this hint through periodic MZT updates is beneficial, even when
considering the CPU-GPU communication latency.

4.14 Memory Zone Monitor Hardware Organization @ The

MZM hardware checks the address of all writes. @ Any store that
attempts to modify an address within a zone that is not yet guar-
anteed to have been transferred is rejected by, or buffered at, the
memory controller. This ensures the snapshot is consistent with-
out immediately stalling the GPU pipeline. The MZM is physically
distributed across memory channels, with each MZM partition
responsible for the physical addresses associated with the chan-
nel belonging to the MZM.

Each MZM partition includes a very simple cache for the MZT
entries to minimize the extra load added to the memory channel
(Figure 5). A single bit per zone identifies zones that have not yet
been preserved. A cache entry therefore includes a tag and a bit
vector that corresponds to a number of contiguous zones. We ob-
serve good locality in the MZT cache with a sectored cache where
each 32B sector is a bit-vector that spans 16MB of DRAM (with a
64KB memory zone size). The minimum access granularity of HBM
memory is 32B, which matches this sector size. Therefore, only
2048 bit-vectors are required to track 32GB device memory space.
The 32 memory channels with 2KB MZT cache each lead to an
aggregated 64KB of MZT cache storage with total data and tag sizes
of 1.1mm? and 0.056mm?2, respectively, based on the CACTI 6.5
cache model [27]. Note that the MZT cache must be updated after
the MZT is updated, though the conservative nature of the MZT
and cached entries means this is, again, an optimization. To further
reduce overheads, any write that is issued after the checkpoint
is completely stored to the host can proceed without checking
the MZT and wasting memory bandwidth. The MZM uses a
global register for this purpose, which is updated when the driver
completes transferring the entire snapshot memory state (Figure 5).

4.1.5 Optimizing Stalled-Write Processing If the memory write
access pattern differs significantly from the pattern at which the
checkpoint offloader transfers data to the host, write operations are
likely to stall for long periods and stall the GPU pipelines. Just like
the CoW mechanism, GPU Snapshot mitigates the impact of long
write stall times by prioritizing the transfer of zones with pending
writes. This requires the MZM to send information about such
zones to the offloader. In the case of the CPU acting as the offloader
through the driver, this incurs a transfer over PCle (or NVLink),
which may take 25us [49, 59]. It is therefore important to balance
the size of the zone to amortize the cost of such transfers w.r.t. the
time required to transfer the data of a zone. We describe a hard-
ware mechanism for reducing this latency and further improving
checkpointing performance below.
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Figure 7: Statistics of 64KB dirty zones for different kernels.

4.2 Incremental Checkpointing

While checkpoint offloading can hide some of the checkpointing
time with useful work on the GPU, incremental checkpointing can
further decrease overheads by reducing the checkpoint volume.
Because a checkpoint interval is long (hundreds or thousands of
seconds), however, it is possible that consecutive kernel iterations
simply write all of GPU memory, rendering incremental check-
pointing ineffective. We quantify the application-specific impact
of incremental checkpointing below.

4.2.1 Dirty Zone Count of CUDA Applications GPU Snap-
shot supports incremental checkpoint with the MZT as a means of
tracking dirty memory zones at low cost. We study the number
of memory zones (64KB granularity) that are modified by CUDA
kernels for different checkpointing intervals across several HPC
applications. As shown in Figure 6, every application we study
(including some not shown in the figures) reaches some saturation
point in terms of the number of dirty zones and does not write to
all of GPU memory. While shorter checkpoint intervals will benefit
more from incremental checkpointing, long intervals still exhibit
substantial potential in most applications.

Figure 7 shows the total number of 64KB zones used by each of
the applications we study as well as what fraction of those zones are
dirty at the saturation point of each benchmark where incremental
checkpointing exhibits the minimal benefit at a long node check-
point interval. While benchmarks like SNAP and MiniAMR will
not benefit from incremental checkpointing (at a dirty-zone track-
ing granularity of 64KB), many applications will show substantial
improvement.
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Figure 8: Average fraction of 64KB dirty zones that are actually
dirty when tracked at finer granularity.

4.2.2 Dirty Zone Granularity Optimization The above anal-
ysis was performed with a dirty-zone tracking granularity of 64KB.
However, it is possible that more fine-grained tracking will enable
additional savings from incremental checkpointing. Figure 8 shows
the average fraction of each 64KB zone that is dirty when tracked
at finer granularity. For most kernels we studied, the finer the track-
ing granularity, the better incremental checkpointing would work.
Very fine-grained tracking, however, adds substantial overheads
to managing the MZT state and managing and coordinating trans-
fers to the host. We later evaluate the performance and impact
of incremental checkpointing using “fine-grained” 4KB tracking
granularity and “coarse-grained” 64KB granularity.

4.2.3 Augmenting MZM for Incremental Checkpointing
GPU Snapshot enables incremental checkpointing with the MZM
by identifying dirty memory zones with the MZT. While the MZM
uses the MZT to determine whether a write should stall, it can also
collect information on which zones are being updated and that will
require transfer to the host at the next checkpoint. We do this by
extending the MZT and MZT cache to track both the state of the
checkpoint that is being transferred to the host and the state being
collected for the next checkpoint. The MZT thus contains two bits
per zone (Figure 5). One bit corresponds to the previous checkpoint
interval and indicates if the zone is guaranteed to have been trans-
ferred or did not need to be transferred because it was not modified
in the previous interval. The second bit corresponds to the interval
being collected and marks whether the zone has been modified by
any store instructions. The MZM uses the previous-interval bit to
determine whether writes must stall and updates the next-interval
bit on any write operation.
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(c) Buffered copy at different buffer size

Figure 9: (a) Device-to-Host copies show low efficiency with small transfers, while buffered copies achieve high bandwidth.
Grey indicates lower-efficiency copy granularities. A single page is not sufficient to fully utilize the GPU-CPU interconnect.
(b) Device-to-Buffer copy size=4KB, Buffer size=256MB, (c) Device-to-Buffer copy size=4KB, Buffer-to-Host copy size=2MB.

4.3 GPU Snapshot Hardware Optimizations

The previous subsection described checkpoint offloading that is
managed by the GPU driver running on the CPU. The communica-
tion latency between the offloader and the accelerator is therefore
high, which can potentially limit checkpointing efficiency. We dis-
cuss two hardware extensions to GPU Snapshot that integrate some
of the offloading functionality into the GPU, though it is still distinct
from (and asynchronous to) regular GPU execution.

4.3.1 Optimizing GPU-CPU Transfers High bandwidth to the
host is critical during checkpointing and it is important to optimize
the data transfers. We micro-benchmark the GPU-CPU copies of
GPU Snapshot at different memory zone granularities on a system
with NVIDIA Titan Xp and CUDA 8.0. Device-to-host bandwidth is
maximized when the transfer granularity is large, at around 1-4MB
(Figure 9). Because incremental checkpointing only transfers dirty
zones and because those zones can be fragmented in memory, sig-
nificant bandwidth is squandered—an 8-lane PCle 3.0 channel, for
example, only achieves 62% of maximum throughput when the
transfer granularity is 64KB and even lower throughput if memory
zones are smaller. Recall that smaller zones increase the benefits
of incremental checkpointing.

To reclaim this bandwidth, we add a device-side double-buffer
to coalesce multiple dirty zones before transferring them to the
host. While one half of the double-buffer is being transferred as
one large block, the other half is filled by the checkpoint offloading
units. @ One such unit is associated with each MZM partition and
uses the MZT to feed zones into the transfer buffer. To minimize
synchronization and communication, each MZM partition is asso-
ciated with a partition of the double-buffer. Once a buffer is ready
to be transferred, the GPU initiates a DMA over the bus and then
notifies the CPU. Alternatively, a signal is raised to the driver
on the host, which then transfers the buffer and updates the GPU
on the transfer progress.

4.3.2 In-Device Duplicate-on-Write (DoW) As discussed ear-
lier, performance can be improved if the stall time for a write fault
is kept to a minimum. While the MZM can notify the driver to
prioritize the transfer of zones on which stores are stalled, the
communication delay between the GPU and the host reduces the
effectiveness of this idea. We therefore propose that the device
itself duplicate zones when they are written—a duplicate-on-write
approach that is similar to an OS copy-on-write. . Once a zone

is duplicated in GPU memory, the MZT is updated and stores to
that zone need no longer stall.

It is impossible to duplicate all of the GPU’s device memory,
which can happen if stores are frequent and have little spatial local-
ity. We, therefore, use the transfer buffer in GPU memory to also
buffer prioritized transfers. The DoW hardware duplicates the now-
dirty zone to the transfer buffer and records the zone’s location
before updating the corresponding MZM. This hardware is simple
because before the snapshot process begins, the driver allocates a
buffer space for each MZM. Thus, all DoW operations are local and
require no synchronization. The CPU now processes data from the
buffer, which is mapped to a location known to the driver. Note
that the MZM only initiates a DoW on the first write-stall to a zone.
When the MZT is queried for a write, if a zone is marked as not-
yet-transferred and also not-dirty, a DoW is initiated. If the zone
is already dirty and also not-yet-transferred, the write is stalled
without initiating a redundant DoW. Note that the in-device preser-
vation buffer absorbs the bursty GPU-CPU copies and leverages
the high GPU memory bandwidth.

5 Methodology

We evaluate GPU Snapshot both in terms of how much it reduces
the checkpoint time of the accelerators within a single GPU-dense
node and its total impact on expected application performance on
a large-scale multi-exaflop supercomputer.

5.1 Single-Node Model

We model both the hardware and driver components of GPU
Snapshot using an accurate in-house simulator. We simulate the full
run of seven different CUDA mini-apps (some with multiple input
sets), taking 2-6 billion GPU cycles each. The simulated execution
time correlates closely with performance on real hardware—the
correlation coefficient is 0.957 for these workloads comparing a
simulated P100 GPU to real hardware. The simulation is necessary
because we modify and extend GPU hardware for GPU Snapshot
support.

We evaluate one representative GPU within a larger node by
constraining the CPU-GPU bandwidth during checkpointing. We
assume that each CPU has 32 PCle 4.0 lanes and scale down the
bandwidth available for any GPU based on the ratio of GPU to CPU
sockets in a node. Such bandwidth sharing can be accomplished
using PCle switches—as is done in current GPU-dense systems such
as the NVIDIA DGX-2, which shares an aggregated 96 PCle 3.0 lanes
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Table 1: Organization inspired by Coral Summit; failure rates based on Titan and Blue Waters. Table 2: Configuration of node

[ System Configurations

| and base system organization.

Peak[EFLOP] 0.45 0.90 18 3.6 7.2 [ Base Node Configurations |
GPU/CPU 16 16 16 2 4 3 16 32 16
System GPUs 57600 | 115200 | 230400 | 460800 | 460800 | 460800 | 460800 | 460800 | 921600 g:gg};g gggg]] (7)'284
CPUs 3600 7200 14400 | 230400 | 115200 | 57600 28800 14400 57600 CPUMNode 5
Nodes 1800 3600 7200 115200 | 57600 28800 14400 7200 28800 GPU/MNode h
Cabinets 100 200 400 6400 3200 1600 800 400 1600 Core/CBU o
GPU | 2.36E+08 | 4.72E+08 | 9.44E+08 | 1.89E+09 | 1.89E+09 | 1.89E+09 | 1.89E+09 | 1.89E+09 | 3.77E+09 Core/GPU 5120
CPU | 6.13E+05 | 1.23E+06 | 2.45E+06 | 3.92E+07 | 1.96E+07 | 9.81E+06 | 4.90E+06 | 2.45E+06 | 9.81E+06 Memory/CPU [GB] b
BW[GB/s] | PCle | 230E+05 | 4.61E+05 | 9.22E+05 | 3.69E+06 | 3.69E+06 | 3.69E+06 | 1.84E+06 | 9.22E+05 | 3.69E+06 Memory/GPU [GB] 32
Local | 3.87E+03 | 7.74E+03 | 1.55E+04 | 2.48E+05 | 1.24E+05 | 6.19E+04 | 3.10E+04 | 1.55E+04 | 6.19E+04 DRAM’éW /Node [GB/s] | 340
PFS 3.45E+03 | 4.49E+03 | 5.84E+03 | 7.65E+03 | 7.61E+03 | 7.60E+03 | 7.59E+03 | 7.58E+03 | 9.86E+03 PCle/Node [GB/s] 125
GPU | 6.56E-05 | 1.31E-04 | 2.62E-04 | 525E-04 | 5.25E-04 | 5.25E-04 | 5.25E-04 | 5.25E-04 | 1.05E-03 $SD BW/Node [GB/s] 15
CPU | 1.14E-06 | 2.28E-06 | 4.56E-06 | 6.36E-05 | 3.31E-05 | 1.73E-05 | 9.13E-06 | 4.84E-06 | 1.83E-05 Total PFS BW [GB/s] 2500
Failures/s | Node | 2.60E-07 | 5.20E-07 | 1.04E-06 | 1.66E-05 | 8.31E-06 | 4.16E-06 | 2.08E-06 | 1.04E-06 | 4.16E-06 Node/Cabinet 1
System | 1.77E-07 | 1.77E-07 | 1.77E-07 | 1.77E-07 | 1.77E-07 | 1.77E-07 | 1.77E-07 | 1.77E-07 | 1.77E-07
Total | 6.72E-05 | 1.34E-04 | 2.68E-04 | 6.05E-04 | 5.67E-04 | 5.47E-04 | 5.36E-04 | 531E-04 | 1.07E-03

between 16 GPUs [37]. For each benchmark, we test a large range
of possible GPU Snapshot configurations. Each configuration is
denoted by which GPU Snapshot features it uses: coarse-grained in-
cremental (I), fine-grained incremental (I-FG), non-blocking offload-
ing (NB), driver-only checkpoint progress hints (H), full checkpoint
(F), and device side double-buffering and DoW optimizations (D).

We simulate the checkpoint at the saturation point of dirty pages
of each application, with the assumption that the checkpoint in-
terval is longer than the saturation period. Note that both the ad-
vantage of incremental checkpoint and non-blocking checkpoint
are amplified with shorter checkpoint interval, which means that
the interval used for our evaluation is conservative. Our simulation
results use 1 rank per GPU for MPI-based programs. GPU Snapshot
can support multiple ranks per GPU can be supported by maintain-
ing a memory zone table per GPU context; while we do not expect
multiple MPI ranks per GPU to change the results, we leave the
evaluation of this organization for future work.

5.2 System Model

We project the impact of the GPU Snapshot to a three-tiered
multi-level checkpoint-restart scheme, modeled at full-machine
scale. We project a system that is inspired by Coral Summit [53, 60].
We use the CPU, GPU, and GPU density parameters projected for
the IBM Power9 CPU, NVIDIA V100 GPU, and varying GPU densi-
ties. The parameters we use are summarized in Table 1 and Table 2.
As mentioned above, we limit each CPU to 32 PCle 4.0 lanes, with
GPU density scaling provided by switches, if necessary. For larger
system configurations, we scale up the global file system bandwidth
by a factor of 1.3 for every doubling of aggregate system perfor-
mance, based on rough trends from planned large-scale system
upgrades (Edison-to-Cori at NERSC [32, 33], Titan-to-Summit at
OLCEF [53], and MIRA-to-Aurora at ALCF [24]).

5.3 Failure Model

The system performance model accounts for both the multi-level
checkpoint times and overheads and the recovery time associated
with failures. We therefore estimate and project failure rates for
the GPU-dense nodes and other system components. We use pub-
lished information on large-scale HPC systems to derive scaling
and baseline reliability parameters for our model. Specifically, we
use statistics gathered from a 261-day period on the Blue Waters
supercomputer [11]. We project the same per-component failure
rates for our Summit-inspired systems as measured on Blue Waters.

We also combine per-chip memory failure rates based on field mea-
surement study in Titan [50]. The system-level failure rate in our
study is lower than in prior work. For example, the total failure rate
of our 0.9 EFLOP machine is 1.34E-04 (2-hour mean time between
interrupts), while that of the 1 EFLOP machine in previous work [1]
is 5.56E-04—4.15 times higher. The main reason for our lower failure
rates is the more realistic accelerator-dense machine organization
we consider: Summit-like nodes with tens or hundreds of teraflops
per node allow exascale systems with fewer than 2—17 the number
of nodes used in prior work [1, 8].

6 Evaluation

We quantify the per-GPU checkpoint speedup of various GPU
Snapshot organizations, then project the impact of GPU Snapshot
on system efficiency based on these checkpoint speedups.

6.1 Single Device

6.1.1 Basic GPU Snapshot Figure 10 shows the checkpointing
overhead relative to our baseline, which uses a full blocking check-
point for GPU memory. To separate out the performance effects
of our different optimizations, four organizations are shown: in-
cremental (“I”), incremental and non-blocking (“NB+I”), full non-
blocking with checkpoint progress hints (“NB+F+H”), and incre-
mental non-blocking with checkpoint progress hints (“NB+I+H”).
As shown before in Figure 7, the fraction of dirty pages in GPU
memory is application dependent. Nekbone shows great check-
point time reduction with incremental checkpointing, but SNAP
and MiniAMR cannot take advantage of incremental checkpointing
because SNAP and MiniAMR have few clean memory zones. A
comparison of non-blocking and incremental checkpointing with
and without checkpoint progress hints, NB+I+H and NB+], respec-
tively, highlights the benefits of coordinating the offloader and the
accelerator: mini-apps such as SNAP, Nekbone, and MiniContact,
for example, benefit substantially from these hints on checkpoint
progress. Full non-blocking checkpoint with checkpoint progress
hints (NB+F+H) helps performance substantially in all applications.
Without checkpoint-progress hints, full non-blocking checkpoint
alone does not always help performance and it is not shown. Incre-
mental and non-blocking checkpoint are synergistic, and applying
both (NB+I+H) performs best in all applications.

6.1.2 Optimized GPU Snapshot Figure 11 shows further per-
formance benefits using the device-side GPU Snapshot optimiza-
tions. Four organizations are shown: incremental non-blocking
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Figure 10: Relative checkpoint time of basic GPU Snapshot
(no device-side optimizations) for a full checkpoint.

with checkpoint progress hints (“NB+I+H”, the most aggressive
organization from basic GPU Snapshot), a fine-grained variant of
that organization (“NB+I-FG+H”), full non-blocking with check-
point progress hints and device-side double-buffering and DoW
optimizations (“NB+F+H+D”), and an incremental variant of that
organization (“NB+I-FG+H+D”). With device-side optimizations,
most applications exhibit over 20X reduction in checkpoint time.
Even the worst application, MiniAMR, is improved by more than
3X. (Note that the range of the plot only goes up to 0.4 for visibil-
ity.) The optimizations utilize the device memory bandwidth for
duplicate-on-write and double buffering to maximize the transfer
bandwidth to the host. These two techniques not only decrease
the latency of handling write faults, but also reduce the likelihood
of write faults because the MZT is updated once each of the dirty
zones is duplicated to the buffer. Good examples of this are Mini-
Contact and Nekbone. MiniContact has a small working set that
is cached well. Nekbone has few writes and it also caches well.

CoMD and HPGMG show great reduction of checkpoint volume
with fine-grained dirty tracking (I-FG). While fine-grained tracking
does not substantially decrease the checkpoint volume of most other
applications, there could still be system-wide benefits to reducing
the GPU checkpoint size. Smaller GPU checkpoints mean smaller
node checkpoints, and smaller node checkpoints improve overall
system performance measurably in many cases, as we explain in
Section 6.2.

Note that the overhead of NB results from non-overlapped stalled-
write processing. If the write faults are not balanced over MZM
partitions (memory channels), buffering resources will be exhausted
and the pipeline stalled. However, this is not a major concern be-
cause physically-contiguous regions are typically balanced across
channels by a hardware address swizzle to maximize the effective
memory bandwidth. GPU Snapshot benefits from this same address
swizzle because it spreads write faults between channels, avoiding
write fault camping and the associated pipeline stalls.

6.2 System-Level Impact

We project the relative checkpoint overhead measured at the
GPU level to the system level. The baseline is again full checkpoint-
ing with three-tier multi-level checkpointing. Each dot in Figure 12
represents a different combination of GPU Snapshot features for
each mini-app studied. The top facet takes into account the memory
footprint of each application and the bottom facet shows efficiency
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Figure 11: GPU Snapshot configurations with device-side
optimizations (double-buffering and duplicate-on-write).

if each program is scaled to full GPU memory utilization. The
figure also shows expected system performance with the baseline
checkpointing scheme and a theoretical limit that checkpoints the
GPUs to host-side memory and local disk with zero overhead.
The theoretical line with infinite intra-node preservation band-
width is not at 100% performance efficiency because system-level
failures must still be tolerated. Likewise, zero GPU-CPU transfer
time (black line) exhibits 92.7% in performance efficiency because of
recovering node and network failures with the checkpoint written
to node-local disk. Note that GPUs within a node share the same
node-local disk. The small footprint of applications such as Mini-
Contact results in efficient resilience with three-level checkpointing
system even without GPU Snapshot. However, when programs use
a large portion of GPU memory, or multiple MPI ranks fill up all
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Figure 12: The system-level impact of the GPU Snapshot
variants at 3.6 exaflops and 16 GPUs/CPU. The top facet
shows the efficiency when memory footprints are taken
into account, and the bottom facet is scaled to estimate
efficiency with full memory utilization.
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Figure 13: The scalability of different GPU densities with
GPU Snapshot.

of GPU memory, GPU Snapshot greatly improves performance.
The device-optimized GPU Snapshot variants, in particular, come
within 3% of the ideal performance with zero GPU—CPU transfer
time on average considering full GPU memory occupancy.

The points above the black line with infinite GPU-CPU preser-
vation bandwidth in Figure 12 also demonstrate the effect of incre-
mental checkpointing on overall system efficiency. GPU Snapshot
preserves only modified state from GPUs, where most computation
happens, to storage media. As a result, the reduced checkpoint vol-
ume of GPU Snapshot also improves disk-level checkpoint time by
reducing the total application state. This indicates that combining
incremental and non-blocking checkpoint with GPU Snapshot leads
to a synergistic effect that further improves performance efficiency
than optimizing memory-level checkpoint only (black line) at large
system scales.

6.2.1 GPU Density Scaling with GPU Snapshot As shown in
Figure 2, dense GPU nodes suffer from node-local resource con-
gestion for fast memory-level checkpoint, preventing high per-
formance efficiency at system scale. GPU Snapshot significantly
reduces checkpoint overhead and enables efficient scaling. Figure 13
projects the effectiveness of optimized GPU Snapshot in GPU-dense
exaflop systems. GPU Snapshot alleviates the resource congestion
for memory-level checkpoint, and allows GPU density greater than
16 GPUs/CPU to be scaled at multi-exaflop system. This is a dras-
tic change from multi-level checkpointing and current intra-node
preservation mechanisms (presented earlier in Figure 2), where
scaling beyond 16 GPUs/CPU becomes increasingly expensive.

6.2.2 Sensitivity to GPU Failure Rate Accelerated memory-
level checkpointing by GPU Snapshot shows robust efficiency even
at high GPU failure rates. Figure 14 shows the sensitivity of perfor-
mance efficiency of three-level checkpointing system at 3.6 exaflops
with 16 GPUs/CPU. Without GPU Snapshot, the efficiency of three-
level checkpointing is sensitive to GPU failure rates, decreasing
to less than 54% at 50X rates. However, optimized GPU Snapshot
sustains 90% in performance efficiency at highly-scaled GPU failure
rates. On the other hand, 0.1X GPU failure rates allows multi-level
checkpoint without GPU Snapshot to achieve 90% efficiency for the
3.6 exaflop system. This indicates that GPU-dense systems must
either be equipped with highly reliable GPU devices or an efficient
resilience mechanism at the node level to pave the road for efficient
exascale computation.
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Figure 14: GPU failure rate scaling in a three-level check-
pointing system with 3.6 exaflops and 16 GPUs/CPU.

7 Related Work

7.1 Multi-Level Checkpoint-Restart

Multi-level checkpoint and restart [31] mitigates frequent bursty
10 accesses by efficiently utilizing the bandwidth at each level of
the storage hierarchy. Checkpointing to node-local storage such as
local disk or memory is fast and sufficient to tolerate node failures,
but is not capable of handling rare-yet-severe global failures. Multi-
level checkpoint-restart improves overall system-level efficiency by
optimizing the checkpoint interval for each level of storage based on
the bandwidth and failure rate associated with that level. We show
in Section 3 that multi-level checkpoints, alone, are insufficient for
providing high efficiency for large-scale GPU-dense systems. GPU
Snapshot is an orthogonal optimization technique for GPU-dense
systems to accelerate global checkpointing.

7.2 Overlapping Global Disk Access

There are prior efforts to reduce the cost of bursty IO in large sys-
tems by better managing disk bandwidth—for instance, the burst
buffer is an example of an IO-attached appliance that is able to
overlap global IO writes with continuing execution [28]. Alterna-
tively, instead of a burst buffer, Agrawal et al. propose a node-local
non-volatile memory with a hardware controller that is capable
of trickling memory-level checkpoints from local nodes to global
disk [3]. GPU Snapshot optimizes top-level intra-node preservation,
which we show in Figure 3 to be the major efficiency bottleneck
in GPU-dense systems. Burst buffers operate as a transparent IO
accelerator for node checkpointers. GPU Snapshot stores serialized
GPU state and metadata in host memory. This serialized GPU state
can thus be integrated with the node checkpoint and transferred
to the burst buffer.

7.3 Hardware-Based Checkpoint-Restart

SafetyNet [47], ReVive [40], and Clank [19] provide fast CPU
checkpointing using hardware extensions. They log main memory
operations and perform checkpoint-on-write to maintain a snapshot
of main memory. SafetyNet copies each evicted cache line to another
cache-level storage with limited capacity. Therefore, it cannot check-
point applications at long intervals, but preservation overheads are
low due to the speed of the checkpoint storage. ReVive supports a
longer interval than SafetyNet by checkpointing to main memory.
It extends a directory-based cache coherence protocol to support
hardware checkpoint in a cache-coherent multi-processor. Clank
logs memory operations, maintains a checkpoint in non-volatile
memory, and recovers from power loss in an energy-harvesting
system with frequent checkpoints. GPU Snapshot is similar to these
prior efforts in that it provides hardware-accelerated checkpoint
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and restart. The goal of GPU Snapshot differs from these works,
however, in that it attempts to provide checkpoint-restart for re-
silience against detectable-uncorrectable errors (where the optimal
checkpoint intervals are much longer), it targets inter-kernel check-
point and restart, and it provides hardware-software collaborative
acceleration through checkpoint offloading.

7.4 Live Migration of Virtual Machines

In virtual machine live migration, a memory snapshot of a virtual
machine is copied to a different host, and that virtual machine con-
tinues to execute during the copy [9]. A similar idea has also been
studied for MPI process migration [54]. Like live migration, GPU
Snapshot allows the GPU to continue executing while a previous
snapshot is transferred, but to the host CPU memory rather than
to a remote node. The post-copy variant of live migration [20] is
most similar to GPU Snapshot. With post copy, the snapshot is first
recorded and pages are then transferred to the destination node.
Specifically, active pushing and prepaging copy dirty move pages
proactively, avoiding page faults. GPU Snapshot is similar in con-
cept, but the implementation is significantly different because GPU
Snapshot targets compute accelerators and therefore it cannot rely
on OS virtual-memory exceptions.

7.5 Uniform Virtual Memory (UVM)

Unified Virtual Memory (UVM) uses a page-fault-based data mi-
gration system on x86 machines, which is similar in concept to
our write-fault-based non-blocking checkpoint [17]. Relying on the
UVM mechanisms for GPU Snapshot is not practical, as it would
incur significant write-fault overheads and prevent GPU Snapshot
from overlapping GPU preservation with computation. One fun-
damental reason for this is the expensive ~25us round-trip latency
needed to synchronize UVM-related TLB state [49, 59]. Further-
more, the GPU TLB coverage is orders of magnitude lower than that
of the GPU Snapshot MZT cache. The GPU Snapshot MZT tracks
physical memory within each memory controller, allowing highly-
cacheable accesses and updates to MZT state without indirection
or coherence mechanisms. Finally, GPU Snapshot has fine-grained
and buffered back-pressure that is inherently tolerated by the GPU
pipeline (similar to in-flight memory accesses), whereas UVM faults
stall SMs, or at least CTAs, until they are fully resolved [59].

8 Discussion

8.1 Wider Applicability

Rapid memory snapshots are applicable to many domains, and
the usefulness of GPU Snapshot is not limited to high-reliability sys-
tems. First, profiling tools such as nvprof use a form of checkpoint
and replay to profile more performance counters than the hard-
ware supports concurrently [38]. The ability to preserve state and
restart execution is useful for advanced debugging techniques [21],
or exception support in GPU applications [25, 30]. GPU Snapshot
could also be used to accelerate control speculation for dynamic
parallelization [12] or speculative loop parallelization [57] for GPUs.
These techniques speculatively execute code that is predicted to
be highly likely to execute, but requires rollback in the case of
mis-speculation. Finally, the software-hardware mechanism for
non-blocking checkpointing can be applied to accelerate the live
migration of virtual machines (VMs). Live migration of virtualized
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GPU resources may be essential for load balancing, maintenance,
and energy efficiency in accelerator-dense data centers.

8.2 Uncoordinated GPU Checkpoint-Restart

GPU Snapshot offloads and accelerates GPU state preservation
to reduce the performance penalty of bursty checkpointing traf-
fic within an accelerator-dense node. An alternative approach for
avoiding bursts of preservation has traditionally been uncoordi-
nated [13] or staggered [51] checkpoints. However, uncoordinated
checkpointing between GPUs is problematic due to remote GPU-
GPU and GPU-CPU memory accesses that require new logging
mechanisms. Current CUDA programming systems and GPU de-
vices support a shared and coherent address space across the entire
heterogeneous node through UVM [17, 36]. Therefore, uncoor-
dinated checkpoint-restart between GPUs must somehow track
remote memory accesses to or from each GPU in order to locally
recover from errors, introducing system design complexity and
logging overheads [6]. To avoid these additional complexities, we
model and optimize a globally coordinated checkpoint. Future work
may also explore the combination of GPU Snapshot with an uncoor-
dinated checkpoint between nodes while relying on a coordinated
checkpoint within each node.

9 Conclusions

GPU Snapshot is a hardware-software collaborative mechanism
to accelerate GPU state preservation. We identify the intra-node
bandwidth to be the efficiency bottleneck for multi-level checkpoint
and restart in GPU-dense systems, and introduce GPU Snapshot
based on the checkpoint offload model to amplify the GPU state
preservation bandwidth. Keeping most of the complexity in the
driver, a simple GPU Snapshot organization is able to reduce the
time required to take a memory-level checkpoint by 3-20X. Adding
in device-side optimizations increases the minimum speedup to 4X
and nearly eliminates the non-overlapped latency of a memory-
level checkpoint in many programs.

We project the impact of GPU Snapshot to system-level per-
formance efficiency at exascale. Based on an analytical model of
multi-level checkpoint-restart, the average system-level efficiency
is improved from 84.9% to 90.9% with the driver-intensive GPU
Snapshot organization. Device-optimized GPU Snapshot further
improves the average efficiency to 94.0%, nearing the theoretical
maximum efficiency of 97.2%.
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