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Abstract—As key applications become more data-intensive
and the computational throughput of processors increases, the
amount of data to be transferred in modern memory subsystems
grows. Increasing physical bandwidth to keep up with the
demand growth is challenging, however, due to strict area and
energy limitations. This paper presents a novel and lightweight
compression algorithm, Bit-Plane Compression (BPC), to increase
the effective memory bandwidth. BPC aims at homogeneously-
typed memory blocks, which are prevalent in many-core architec-
tures, and applies a smart data transformation to both improve
the inherent data compressibility and to reduce the complexity
of compression hardware. We demonstrate that BPC provides
superior compression ratios of 4.1:1 for integer benchmarks
and reduces memory bandwidth requirements significantly.

I. INTRODUCTION

The computational throughput of many-core architectures
is increasing exponentially and we need corresponding
increases in data transfer to feed the compute units. The data
bandwidth of off-chip main memory scales poorly, however,
due to pin and energy limitations—the ITRS projects that
package pin counts will scale less than 10% per year [1].
At the same time, per-pin bandwidth increases come with a
difficult tradeoff—a high-speed interface requires additional
circuits (e.g. delay-locked loops, phase-locked loops, on-die
termination [2], [3], [4], [5]) that burn static and dynamic power.
These factors conspire to often make the main memory link a
system performance bottleneck in many-core architectures [6].

Data compression can solve this growing challenge
by increasing the effective memory throughput without
augmenting the physical bandwidth [6], [7]. Compression for
memory is challenging, however, because it must be low latency
and be able to handle relatively fine-grained random accesses.
As a result, current compression techniques that target main
memory or caches generally only achieve compression ratios
of around 2:1 for integer benchmarks and rarely more than
1.5:1 for floating point benchmarks. In this paper, we present
a novel data compression technique, Bit-Plane Compression
(BPC), with an average compression ratio of 4.1:1 for integer
benchmarks and 1.9:1 for floating-point benchmarks.
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Applications targeting many-core architectures generally
make nearly all data accesses to large arrays in memory;
we show that this fact holds across a set of CUDA GPGPU
benchmarks (from Rodinia [8], Parboil [9], and Lonestar [10]).
Many of these arrays are of primitive type (e.g., arrays of
int). Other arrays are of composite types, but they contain
multiple fields of the same primitive type (e.g., arrays of
struct {int node; int edge;}). Arrays of primitive and
composite-homogeneous types both have a single data type
and can be compressed efficiently by using a compression
algorithm that exploits type-related word-to-word similarities.

Prior to encoding, BPC transforms each memory data
block using a novel and lightweight transformation, Delta-
BitPlane-XOR (DBX), to improve the inherent compressibility
of data. The transformed data has significantly higher inherent
compressibility and increased value locality when the data
block is homogeneously typed. BPC combines run-length
encoding with a type of frequent pattern encoding to compress
the pre-coded data. Because of its effective transform and
matching efficient encoding, the low-cost BPC algorithm
provides significantly better compression ratios than prior
techniques across a large range of benchmark applications.

Conventional memory interfaces access DRAM at a coarse
granularity (typically a half or a full cacheline). Such accesses
curb the benefits of compression because the coarse-grained
transfers lead to fragmentation and waste savings. We therefore
evaluate the performance benefits of BPC in the context of a
packetized memory interface, such as that of the Hybrid Mem-
ory Cube [11], [12]. We use a modified packetized interface
that can densely pack the compressed transfers to measure the
maximum bandwidth reduction that is achieved with BPC.

We target a GPGPU system in our evaluation because the
performance on such systems is often bound by memory
bandwidth. Also, they are designed to easily extend to growing
core and functional unit counts, where bandwidth is of even
greater concern.

We summarize the key contributions of this paper below:

• We develop Bit-Plane Compression (BPC), which
introduces the concept of a bit-plane transformation to
memory compression. BPC significantly outperforms prior
memory compressors achieving an average compression
ratio of 4.1:1 and 1.9:1 for integer- and floating-point heavy
benchmarks respectively; the best existing compressors, C-



pack [13] and Base Delta Immediate [14], achieve just over
2.3:1 and 1.5:1 for integer and floating-point respectively.

• BPC is a general memory compression mechanism but
we focus our evaluation on the benefits it provides for
bandwidth-constrained GPGPU many-core processors. In
this context, we integrate BPC with a packetized memory
interface and demonstrate that BPC can either achieve
performance benefits at a given link bandwidth or match
performance goals while consuming about half the link
bandwidth, or less.

II. BACKGROUND

This section reviews the concepts and terminology that are
fundamental to a full description and evaluation of BPC and
its associated packet interface.

A. Data Compression Background

Lossless compression encodes data to store or transfer it
with fewer bits and can later decode the data into precisely
its original form. Lossless compression techniques can be
grouped into two categories: fixed-width coding (FWC) and
variable-width coding (VWC). FWC compresses data by
replacing each fixed-length input symbol with a corresponding
variable-length output code symbol. The most frequent symbols
are assigned to the shortest codes to statistically reduce the
aggregate data size. Typically, the length of each code symbol
is approximately proportional to the negative logarithm of
its probability (e.g. Huffman coding [15]). The maximum
compression ratio of FWC is bound by the entropy of its input
data [16], and some encoders (e.g., Arithmetic coding [17])
can come very close to this bound. In information theory, the
entropy of a set of elements with occurrence probabilities
of p1,···,pn is defined as: H(p1,···,pn)=∑pilog2

1
pi

. Data with
lower entropy has better compressibility because a smaller
number of symbols dominates the input data.

Compression ratio can be improved by increasing input
symbol size such that frequently-appearing large input symbols
are represented by short output code symbols. However, the map-
ping space of FWC explodes with longer symbols, making such
encodings impractical. VWC, on the other hand, maps frequent
subsets of multi-symbol sequences with varying width into
output codes (of fixed or variable width) and can achieve a high
compression ratio while limiting table size; the well known run
length encoding (RLE) and Lempel-Ziv (LZ) schemes perform
variable width compression. Typically, VWC relies on a large
dictionary of static or dynamic frequent strings and the storage
requirement of the dictionary can be prohibitively high for
hardware compressors on small blocks. An important exception
is run-length encoding, which is a light-weight VWC, where
simple sequences (repetitions of a symbol) are detected without
an explicit dictionary. VWC can outperform the entropic limit
by combining many input symbols in a compact way.

A compression algorithm can optionally transform
the data prior to encoding. This is common with lossy
compression schemes, where transformations are used to
reduce the perceived loss of information (e.g., perceptual
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I[] (71.8%), {I;I;}[] (20.5%)
R.BPP F[] (100.0%)
R.B+T {I;I[257];I[257];B;I;}[] (87.8%)
R.CFD F[] (87.9%), I[] (12.1%)
R.DWT I[] (90.3%), uC[] (9.7%)
R.GE F[] (100.0%)
R.HSP F[] (100.0%)
R.HW F[] (99.9%)
R.HYS F[] (61.6%), I[] (38.4%)
R.KMN F[] (98.6%), I[] (1.4%)
R.LEU F[] (99.9%)
R.LMD {D;D;D;D;}[] (81.5%), D[] (10.2%)

R.LUD F[] (100.0%)
R.NW I[] (100.0%)
R.PARTF I[] (99.3%), uC[] (0.5%)
R.PATHF I[] (100.0%)
R.SC F[] (97.6%), {F;F*;L;F}[] (2.1%)

R.SRAD F[] (100.0%)

Pa
rb
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l

P.BFS {I;I}[] (77.2%), I[] (22.8%)
P.CUTCP F[] (89.6%), {F;F;F;F;}[] (10.4%)

P.HISTO uI[] (93.8%), uS[] (3.1%)
P.LBM F[] (100.0%)
P.MRIG uI[] (40.9%), {F;F;F;F;F;F;}[] (29.5%)

P.MRIQ F[] (100.0%)
P.SAD (u)S[] (100.0%)
P.SGEM F[] (100.0%)
P.SPMV F[] (50.9%), I[] (49.1%)
P.STEN F[] (100.0%)
P.TPACF F[] (99.4%), L[] (0.6%)

L
on

es
ta

r L.BH I[] (52.4%), F[] (47.6%)
L.MST uI[] (98.8%), B (1.2%)
L.SSSP uI[] (100.0%)
L.SP I[] (47.9%), F[] (47.9%)

TABLE I: The data types in the global memory allocated
for different GPGPU benchmarks. u/B/C/S/I/L/F/D/{}
stand for unsigned/bool/char/short/int/long/float/double/struct,
respectively. There is at most only 1.6e-4% of memory devoted
to scalar data; most memory is either used for arrays of
primitives or arrays of composite-but-homogeneous types. A
full version of this table is available on http://goo.gl/BrIVWi.

video encoding [18]). As we discuss later, transformations can
improve compression ratios for lossless compression as well.

B. Many-Core Application Data Characteristics

Applications targeting many-core architectures, such as
GPGPUs, often utilize an SPMD (single-program multiple-data)
execution model with explicit or implicit SIMD/SIMT
(single-instruction multiple-data/thread) components. This
execution model enables very high computational throughput
with manageable control overheads. Such programs typically
perform the same operation on multiple data that are stored
in large arrays. Table I shows a set of GPGPU benchmarks,
written in CUDA, and their input data along with a breakdown
of global memory allocation based on program data types.
We measure the allocated sizes of cudaMalloc(), followed by
source code analyses to match data type. Some applications
(MUMmerGPU and k-Nearest Neighbor in Rodinia and some
applications in Lonestar) are excluded as they fail to run on
GPGPU-Sim due to unsupported APIs. Myocyte (Rodinia) is
excluded due to its small memory footprint (812B); the listed
applications have footprints ranging from 0.5MB to 900MB.
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The table indicates that most applications have no scalar
data in global memory and that the allocation of non-array
data (if there is any) is tiny compared to the large allocations
of array data. An array can be a primitive-type array, a
composite-but-homogeneous-type array, or a composite-
and-heterogeneous-type array (e.g. array of struct {int
node; float weight}). The first two array types are
homogeneously-typed and often have high value locality. In the
table, all but three applications have practically 100% of global
memory allocated as homogeneously-typed arrays. R.B+T has a
heterogeneous array with struct of 516 int and 1 bool, which
is almost homogeneous as 16 out of its 17 128B cache lines
have purely ints. R.LMD has 8.4% of data in struct of 4 int
and 1 long and R.SC has only 2.1% of data in heterogeneous
array while the rest of data is homogeneously-typed.

C. Memory Background

DRAM is widely used as system main memory for its high
density and low cost. An access to DRAM initiates a burst
of data transfer to amortize control overhead and the unit of
transfer is 32B to 128B, depending on data channel width
and DRAM burst length. The data block is transferred over
a bidirectional data bus and the memory controller prevents
bus contention by scheduling commands based on expected
data transfer duration. This interface can be problematic
with data compression because: (1) the fixed and coarse
transfer granularity can easily overwrite the fine-grained bit
savings from compression, and (2) the transfer duration of
variable-length compressed read data is unpredictable to the
memory controller, which prevents from reusing the saved
time slots for other blocks to improve effective bandwidth.

These limitations are, however, changing as some recent
high-bandwidth memories use packetized unidirectional link
interfaces to improve data bandwidth. Unidirectional links
have a single driver so do not suffer from bus contention issues.
The Hybrid Memory Cube (HMC) [12], [11], for example,
uses a pair of undirectional data links and achieves up to
15Gb/s per direction per lane, compared to the 7Gb/s possible
with high-end GDDR5 parts. HMCs have a packet-based
interface to interleave read and write streams on the same link.
Requests are sent to memory as a packet via a downstream
link. A memory controller on the memory side (called a vault
controller), receives the requests and issues DRAM commands
based on internal DRAM state. Responses are sent back to the
processor via an upstream link. To provide out-of-order service,
each response is tagged with its request information to identify
the originating request. All packets have a header and a tail to
hold the tag and other meta data, such as checksum for link error
detection. Packets without data (read request and write response)
have only a 64-bit header and a 64-bit tail, while packets with
data (read response and write request) have a 64-bit header
and a 64-bit tail with multiple 128-bit data FLITs (flow control
digits) in between. This fine-grained control over data size (16B)
also reduces internal fragmentation with data compression,
compared to 32B to 128B granularities found in other DRAMs.

III. PRIOR WORK

In this section, we talk about prior research on compression
algorithms and the architectural changes to get the benefits
from data savings.

A. Memory Compression Algorithms

There is significant amount of prior work on compression
algorithms for memory data, targeting effective storage
capacity, effective bandwidth or power efficiency. There are
several challenges that need to be addressed to get benefit
out of compression in the memory system. Most importantly,
the random access nature of the memory system limits the
compression block size, leading to a lower compression ratio.
Furthermore, sensitivity to access latency prevents the use
of compute-intensive compressors. As a result, most existing
memory compression algorithms provide modest compression
ratios of roughly 2:1 for integer-type benchmarks. We briefly
describe some prominent prior work below.

Frequent Pattern Compression (FPC) [19] focuses on
universally frequent patterns of integer values and encodes
each 32-bit symbol using a static mapping. Patterns such as
small integer value in a large data type are compressed to
a smaller type and decompressed by a sign extension. This
FWC is augmented by Zero Run-Length Encoder (Z-RLE), a
VWC with static mapping, to compress frequent zero patterns.

Frequent Value Compression [20] observes that caches
have a small number of frequent 32-bit values and replaces
those values with indices into a dictionary of the frequent
values. IBM Memory Expansion Technology (MXT) [21] and
X-RL [22] divide memory into large blocks (a few KBs) and
maintain a per-block dictionary to avoid re-compressing other
blocks. MXT uses VWC to replace variable-width strings with
a fixed-width index to the dictionary. X-RL on the other hand,
replaces 32-bit fixed-size input with a variable-length index
to a fully or partially matching entry and uses Z-RLE on it.

Benini et al. [23] propose to compress caches using two
dynamic memory-wide dictionaries. At each point in time, one
dictionary acts as a master and the other as a slave. A dictionary
transitions from being a master to slave based on changing data
patterns. Once all cache lines compressed by a dictionary are
either evicted or re-compressed, the master and slave dictionar-
ies are swapped. SC2 [24] observes that data statistics change
occasionally and re-compression overhead can be acceptable in
caches. It uses Huffman code [15] to build dynamic dictionary
across a cache, exploiting statistical redundancy, and achieves
an exceptional compression ratio of up to 4×.

Although dynamic dictionaries provide high compression,
they are a poor match for main memory. This is because, unlike
caches, re-compression overhead can be prohibitively high in
main memory due to bandwidth and energy issues. Additionally,
they rely on content-addressible memory for lookup, resulting
in costly compressor energy and area overheads.

C-pack [13] utilizes both static patterns and a dynamic
dictionary. 32-bit input symbols are compared against entries
in a per-block dynamic dictionary, and frequent patterns on
partial matching are encoded using a fixed mapping. Base
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Delta Immediate (BDI) [14] exploits the small dynamic range
of values which is common in integer and pointer array types.
It encodes a block of data as a single base value, followed
by a set of differences relative to that base.

Two recent memory compression papers, COP [25] and
Frugal ECC [26] use new forms of memory compression
for ECC metadata storage. Because they focus on metadata,
their compression ratio goals are very modest and the
techniques they present are unlikely to result in significant
link performance improvements.

GPUs employ compression for image data, but not for general-
purpose data. AMD’s Lossless Delta Color Compression and
NVIDIA’s Delta Color Compression store image data as a
delta from the previous pixel and save bandwidth [27].

B. Memory Compression Architectures

While a good compression algorithm can reduce data size,
it must be accompanied by an architecture that can turn these
savings into performance or other system-level benefits. One
significant hurdle is that memory is accessed in fixed-sized
blocks, which commonly results in high fragmentation after
compression. Also, variable-sized compression makes the
starting address of compressed data blocks unpredictable,
which makes locating a block challenging. This is especially
true in main memory, where additional access for location
information is very expensive in terms of latency and energy.
Prior work has addressed some of these issues as we describe
below. We do not discuss prior work related to compressed
caches (e.g. indirect index cache [28], [29], [30], [13]), as it
is not pertinent to the architecture we are evaluating.

One common solution for locating the compressed data
is to maintain a table of translations between original and
compressed addresses. IBM MXT stores compressed data of
a 1KB raw data line into fixed size sectors of 256B to avoid
external fragmentation. For locating the data, MXT maintains
a translation table on a large L3 cache chip to redirect original
address to sectors. Ekman [31] uses a TLB-like structure to
maintain the sizes of each block and calculate the compressed
data address from sizes of its prior blocks. The latency of
address calculation is hidden by executing in parallel to LLC
access, which increases power consumption.

Linearly Compressed Pages [32] gives another solution
for locating compressed memory blocks. It fixes a target
compression ratio so that compressed data address can be
extracted from the original address using a linear equation,
rather than a table lookup. Blocks that cannot be sufficiently
compressed are located in reserved storage in the same DRAM
row buffer and need an indirection.

As off-chip data transfers consume a growing portion of
system energy, data compression for reducing off-chip traffic
is gaining more importance. MemZip [33] uses memory com-
pression to reduce memory bandwidth usage instead of trying
to increase effective storage capacity. MemZip reduces data
transfer granularity with rank subsetting and transfers only valid
compressed data from just a subset of memory chips, thus saving
bandwidth. Sun Rock CMT processor [34] uses hardware

to compress packets sent over links between processor and
memory controller. Its data bandwidth, however, is still bounded
by uncompressed data between memory controller and memory.

IV. BIT-PLANE COMPRESSION

BPC starts with a smart data transformation, Delta-BitPlane-
XOR (DBX), to improve the compressibility of data while
keeping the encoding complexity comparable to existing
compressors. Then, we combine two light-weight compression
techniques, frequent pattern compression (FPC) and run-length
encoding (RLE), to turn the improved compressibility into real
bit savings.

A. Transformation for Bit Plane Compression

An important but often under-appreciated aspect of
compression is the data transformation before encoding. We
present and evaluate the novel Delta-BitPlane-XOR (DBX)
transformation that can: (1) reduce entropy to increase
potential compressibility; (2) increase the frequency of all-zero
symbols for efficient run-length encoding (RLE); (3) increase
the frequency of other simple patterns for frequent-pattern
compression (FPC); and (4) have a low-latency and low-cost
hardware implementation. We evaluate DBX overheads later,
when discussing the full compressor algorithm.

The DBX transformation is composed of three simple
transformations applied in sequence: Delta that subtracts
neighboring values (Figure 1a); Bit Plane that rotates input
symbols such that each of its output symbol includes one bit
of every input symbol, all at the same bit position (Figure 1b);
and an XOR of neighboring symbols.

Like prior work ([14]), we use Delta to expose value
locality. When neighboring values are similar, subtracting
them results in a smaller range of values. Delta processes a
128B block transferred from memory as 32 32-bit input values.
The output of Delta is a sequence of difference symbols,
where each symbol is one bit wider than the input symbols to
accommodate the borrow bit for subtraction; the first symbol
is the original input base symbol. Despite the extra bit, when
value locality exists, entropy is reduced and value range
compressed (see example in Figure 1a).

While the reduced-range values already reduce entropy and
can be used for compression (e.g., BDI compression [14]), we
apply a further important insight: value locality can be further
increased when considering bit planes rather than the values
themselves. On a homogeneously-typed block, the difference
symbols often have another layer of value locality. DBX applies
the Bit-Plane (BP) transformation (Figure 1b) on the Delta sym-
bols to change their symbol orientation and exploit this value
locality. A bit-plane is a set of bits corresponding to the same
bit position within each word in a data array; in this case the
output of Delta. The BP transformation has been used for media
compression in the past [35], [36] and we show it works well
for memory compression as well. In our case, the output of the
combined Delta-BitPlane (DBP) transformation is 33 symbols,
each corresponding to a bit-plane of the Delta value sequence.
A small positive Delta has its upper bits filled with zeros and a
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Fig. 1: Examples of data transformation to change compressibility.

small negative Delta has its upper bits filled with ones. There-
fore, by XOR-ing neighboring bit-planes, the overall DBX trans-
formation yields a large number of all-zero symbols for small
Deltas. The top symbol is the base and contains the sign infor-
mation of the deltas. We discuss the effectiveness of DBX using
analysis of several benchmarks and their memory streams below.

1) Transformation Evaluation: To show the enhanced com-
pressibility with transformations, we start with a detailed analy-
sis of observed symbol patterns and then measure data entropy
and repeated zeros of the untransformed data and the Delta and
DBX transformations. These metrics are inherent to the data
and independent from any particular compression algorithm.

We run the benchmarks listed in Table I on the GPGPU-Sim
simulator configured to generally match the NVIDIA GTX480
processor (Table 4b). The simulations run to completion unless
first terminated by an overflow of the 32-bit interconnect
packet ID; note that L.MST finishes its computation but
does not terminate. We collected memory traffic data at the
LLC–DRAM interface (i.e., writebacks and cache fills) and
match to program data types based on addresses recorded
during allocation. Note that the data type breakdown in Table I
is based on allocations and is different from memory traffic
due to different access patterns and locality (Figure 2a).

2) DBX Symbol Patterns: Figure 2b shows the detailed
DBX symbol statistics of each bit position across several
representative applications. For each application, the top most
horizontal bar corresponds to the base bit plane and each of
the 32 horizontal bars below it correspond to one of the 32 bit
positions of the DBX transform. The colors represent different
counts of 1s at that bit-plane. This representation allows us to
understand what the benefits of the transformation are and how
value characteristics of different applications affect transfor-
mation effectiveness. We make 3 important observations and
explain the analysis that leads to them below: (1) DBX yields

many all-zero symbols, especially toward the higher bit planes,
which enables very efficient RLE; (2) a fair number of DBX
symbols exhibit only a single, or very few, ones and we will take
advantage of this for FPC; and (3) the first two observations
hold for floating point (FP) and mixed-type data, though to a
lesser degree than for homogeneous integer (INT) types.

Integer applications exhibit many 1s at the top bit-plane posi-
tion (the base bit-plane with DBP transformation) because this
bit plane contains the sign of the deltas of the different words.
Some applications (e.g. R.B+T, R.KMN) have mostly positive
Deltas because their values repeat or monotonically increase
and their base bit-planes are mostly all-zeros. L.MST and
R.DWT, whose data is nearly 100% int arrays, have the rest
of the upper bit planes (DBX symbols) dominated by all zeros.
R.BFS has 58.2% of its data in a bool array. As boolean values
are stored as 8-bit types in CUDA, only the 0/8/16/24th bit of
positions of the original data contain information. This leads
to the large fraction of non-zero symbols to the left and right
of these bit positions (positions 0/7/8/15/16/23/24), while the
other positions are dominated by all-zeros. P.SAD calculates
the sum of absolute differences for motion estimation in a video
codec and performs a brute force search on image data to find
the closest matching block. Because of this exhaustive search,
its data is highly random and has relatively fewer zero DBXs.

Among the benchmarks that we evaluated, only R.B+T
has significant traffic originating from heterogeneous arrays.
However, its heterogeneous data type is almost-homogeneous
with 16 out of its 17 128B cache lines pure int. The other
cache lines contain 31 ints and 1 bool, where the boolean
value generates a single outlier value and results in DBX
symbols with a single 1.

With FP data types, a small value difference often results
in very different values in the fraction field, significantly ham-
pering compression. The sign and exponent bit fields, however,
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Fig. 2: Evaluation of DBX transformation on GPGPU main memory link traffic.
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do not change as rapidly and exhibit value locality. R.SRAD,
R.BPP, P.LBM and P.KMN, for example, have frequent all-zero
DBX symbols at these positions. R.KMN is dominated by 0.0
float values (the input set is realistic and 0.0 values are common
in some classification tasks because of sparse data). P.LBM
has repeating non-zero values, since there are long zero runs
after DBX but short ones in the original symbols (Figure 2d).

DBX also reveals some interesting value redundancies of
floating-point data. R.HW has an outlier distribution of more
all-zero DBX symbols at lower fraction bit positions, since it
stores integer values from image data as floats. R.HSP and
R.HYS show a similar pattern. R.LMD has double-type data
and its 64-bit values are treated as two consecutive 32-bit values
in the DBX transformation resulting in alternating patterns at
even and odd positions.

For Mixed-type applications (P.SPMV, R.BH, R.PARTF),
where some blocks are homogeneously INT type and the others
are homogeneously FP, the distribution of lower all-zero DBX
symbols is closely related to the fraction of integer blocks.

3) Entropy: Figure 2c shows the entropic compression ratio
bound, which is the maximum compression ratio achievable
using fixed-width compression. The inherent compressibility
increases by 87% (geometric mean) for INT (including both
homogeneous and heterogeneous), 23% for FP, and 20% for
Mixed. INT applications have better (lower) entropy after
DBX transformation due to frequent all-zeros in upper DBX
symbols. The maximum inherent compression ratio of 18.6
is exhibited by R.B+T, despite its partially heterogeneous
types. This is because it has frequent all-zero DBX symbols
across positions. Many of the FP applications have moderate
increases in compressibility due to limited all-zeros from the
sign and exponent fields. However, R.HW, R.HSP, P.LBM, and
R.KMN exhibit compressibility greater than 4 : 1 because of
the small dynamic range and many zeros as discussed above.
Mixed-type applications tend to compress better than FP ones
because of the prevalence of INT values.

DBX only lowers the inherent compressibility for three
applications out of the entire 33 applications we evaluated.
Both R.LMD and R.PARTF have 64-bit values, which lead to
many non-zero DBX symbols because DBX is implemented
for 32-bit input symbols. The DBX layout can be changed to
cover 16 64-bit symbols rather than 32 32-bit symbols. We
do not evaluate entropy of this derivative of DBX because
the different sizes of original symbol (64-bit) and bit-plane
symbols (15-bit) makes a direct comparison not meaningful. A
compression algorithm based on the 16 x 64-bit DBX shows
slight compression ratio improvement over 32 x 32-bit DBX
in Section V-A. Another application, R.BH, shows a 17%
reduction in inherent compressibility because its Deltas have
poor value locality.

4) Repeated Zeros: A bit in a DBX symbol can be 1 only
if the corresponding delta is non-zero and its absolute value
is smaller than the bit position. As a result, DBX-transformed
data is highly biased toward 0. Figure 2d details the fraction
of zeros in each 128B block of the original and transformed
memory data stream, as well as the statistics of different zero

run lengths. Note that zero runs are capped by the block
size at 1024 bits. The figure shows that the transformations
are generally very effective at increasing both the overall
number of 0 bits (70.5/72.3/89.1% for Original/Delta/DBX,
respectively, for INT) and the zero run lengths (62.8% of bits
are 0 and belong to runs longer than 512 bits with DBX).
This is an ideal scenario for cheap and effective run-length
encoding. We discuss this further in Section IV-B.

For the FP applications, the improvements from
transformation are less dramatic, still substantial with
DBX. On average, there are 58.8/63.6/73.9% bits as 0 for
Original, Delta, and BPX, respectively. Many of the 0s added
by the transformations in FP come from the sign and exponent
components, which account for 28% (9 out of 32 bits) of the
bits in single-precision FP. For Mixed-type applications, the
fraction and lengths of zeros are in between INT and FP.

In summary, the DBX transformation reduces data entropy
by exploiting type homogeneity and small dynamic ranges, and
tailors data for a light-weight VWC, Z-RLE, by maximizing
the number of zeros and their run lengths.

B. Encoding for Bit Plane Compression

Based on the improved compressibility of DBX transformed
data, we design an efficient compression algorithm, Bit Plane
Compression (BPC), to achieve a high compression ratio
with acceptable hardware overhead. While sophisticated
FWC compressors can approach the entropic limit, their
implementation overhead is prohibitive for large symbols: for
instance, Huffman code on 31-bit symbols requires a 231-entry
dictionary. Instead, BPC encodes DBP/DBX symbols with a
combination of FWC and VWC with small static mappings.

In BPC, long zero runs of bit-planes are encoded by Zero
Bit-Plane Run Length Encoding (ZBP-RLE), while non-zero
bit-planes are encoded with frequent pattern encoding. This
is a similar approach to that taken by some prior work [19];
however, the DBX transformation radically increases the
effectiveness of this simple compression algorithm.

Figure 3a shows an overview of the BPC implementation (a
pipelined one, which reuses 9 bit-plane encoders over 4 cycles
to process 33 bit-planes). The input to the BPC consists of DBP
or DBX transformed bitplanes. In BPC, each input bit-plane is
compared against the frequent patterns shown in Table 3b. If
a bit-plane is zero, it is collectively encoded with neighboring
zero bit-planes, if any, by ZBP-RLE. For non-zero bit-planes,
BPC uses one of the 4 patterns as follows. First, a bit-plane
with all 1s is encoded as a 5-bit code. Second, a bit-plane with
zero DBP but non-zero DBX is encoded as a 5-bit code. The
third common pattern in a bit-plane is two consecutive 1s. If the
original symbol has an exceptional value than the rest in that
block, its deltas with previous and next symbol have exceptional
values, resulting two consecutive 1s. Likewise, fourth pattern
is a bit-plane with one 1, which happens if a block has two
consecutive groups with different value clusters. The delta at
the boundary then has an exceptional value than other small
deltas, resulting in a single 1 in the bit-plane. Both the third
and fourth patterns are encoded as 5-bit prefix, followed by
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(a) An overview of BPC.

DBP/DBX Pattern Length Code (binary)

0 (run length 2∼33) 7-bit {2’b01, (RunLength - 2)[4:0]}
0 (run length 1) 3-bit {3’b001}
All 1’s 5-bit {5’b00000}
DBX!=0 & DBP=0 5-bit {5’b00001}
Consecutive two 1’s 10-bit {5’b00010, StartingOnePosition[4:0]}
Single 1 10-bit {5’b00011, OnePosition[4:0]}
Uncompressed 32-bit {1’b1, UncompressedData[30:0]}

(b) DBP/DBX symbol encoding in BPC. N’bxxxx represents an N-bit code
with value xxxx.
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(c) Compression ratio comparison.

Fig. 3: Bit-Plane Compression (BPC) overview, code map, and evaluation results.

the position of first 1. If none of the 4 patterns match, a 1-bit
flag indicates a compression failure, increasing the size from
31 to 32 bits. The base (first original) symbol is compressed
separately by original symbol encoder as {3’b000}, {3’b001,
4-bit data}, {3’b010, 8-bit data}, or {3’b011, 16-bit data} if
its value is 0 or fits into 4/8/16-bit signed integer, respectively.
Otherwise, the base symbol is encoded as {1’b1, 32-bit data}.

V. EVALUATION

While BPC is a general compressor applicable equally
to caches and main memories for storage and for link
compression, in this paper, we focus on main memory link
compression to address the serious off-chip bandwidth problem
in GPGPUs. We first compare the compression ratio of BPC
against previous compression algorithms and evaluate the area
and latency overheads of BPC. Then, we integrate BPC with
an HMC-like packetized link interface to measure the benefits
BPC provides in reducing memory bandwidth requirements
and improving performance.

A. Compression Ratio Evaluation

We evaluate BPC and existing algorithms (FPC, BDI, and
C-pack) on the memory traffic data described in Section IV-A.1.
Figure 3c shows the compression ratio comparison. We did
not include SC2 as it cannot be extended to main memory
compression in a straight-forward manner due to factors such
as the need to recompress after every dictionary change. Note
that some applications use input datasets that are randomly
generated and such benchmarks unsurprisingly exhibit lower
compression ratios. We believe other benchmarks provide a
more realistic view of the potential of BPC.

For INT applications, the average compression ratios are
1.6/2.3/2.2/4.1 for FPC/BDI/C-pack/BPC, respectively. BPC
is significantly better than the best of the competitors in 9 out
of 10 applications. The only case where BPC underperforms

any of them is P.SAD (1.3 with BPC vs. 1.4 with C-pack). This
is primarily because the brute force search in P.SAD makes
values within a block highly distributed and exhibits bit-planes
with multiple 1s, resulting in symbols that are not frequent
pattern in the BPC encoder. Despite its simplicity, BPC even
exceeds the entropic limit of the original symbol streams in 6
out of 10 applications (L.MST, L.SSSP, R.NW, R.DWT, P.BFS,
and R.B+T). L.MST and R.B+T have BPC compression ratios
of 3.5 and 10.6, respectively, while the entropic limits of their
original symbols are 2.0 and 2.7, respectively. This is primarily
due to the reduced entropy resulting from the smart DBX
transformation and multi-symbol savings from ZBP-RLE.

For FP applications, the average compression ratios are
1.2/1.5/1.4/1.9 for FPC/BDI/C-pack/BPC, respectively. If we
exclude R.KMN, which has an outlier compression ratio of
16.0, the compression ratios decrease to 1.1/1.3/1.3/1.7 for
FPC/BDI/C-pack/BPC. BPC is worse than C-pack by some
margin on R.LMD (1.11 vs. 1.85) due to its 64-bit data type
and slightly worse on R.GE (1.20 vs. 1.25). Still, 16 out of 18
FP applications have BPC as the best performing compressor
and 6 of them show BPC compression ratios are better than
the entropic maximum compression bound achievable with
the original symbols. BPC compresses R.HW/R.HSP/R.KMN
1.9/2.2/2.1 times better than competing compressors,
respectively. These significant improvements come from
previously unexploited redundancy in FP data: zeros at lower
fraction bits, small value range of the fraction, and long
repeated values. The reasons for the zeros at lower fraction
bits are a result of converting integers to float types. Also,
BPC does not increase average data size after compression
in any of the applications, whereas FPC, BDI, and C-pack
increase the size of 8, 3, and 4 applications, respectively.

For Mixed-type applications, the average compression ratios
are 1.5/1.7/2.1/2.5 for FPC/BDI/C-pack/BPC, respectively.
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BPC does worse than C-pack for L.BH (2.2 vs. 3.1) and
R.PARTF (4.1 vs. 4.3) but is better by a significant margin
for the other applications.

The biggest advantage of BPC is that the DBX transform
creates long runs of all-zero sequences that are encoded with
ZBP-RLE. 69% of the blocks of R.B+T (INT) have zero bit-
plane runs of 32 or longer, enabling compression of more than
992 bits of data (in bit-plane symbols) into a 7-bit coded output
symbol. Note that R.B+T originally has poor compressibility
(its entropic limit with original symbols is only 2.7:1). While its
values in the original symbols are quite diverse, their deltas are
mostly similar resulting in zero bit-planes and BPC achieves
a high compression ratio of 10.6. R.DWT (INT) has 95% of
blocks with zero bit-plane run lengths of 24 or greater. The
worst compression achieved by BPC is 1.08:1 from P.TPACF
(FP). Most of the blocks of P.TPACF have ZBP runs of length
3− 6 in sign and exponent fields. While this is not a high
compression ratio, ZBP-RLE still prevents BPC from requiring
more bits than the original stream (FPC/BDI/C-pack increases
average block size by 8.6%/0.4%/4.8%, respectively).

We test two other configurations of BPC that offer
marginally better compression: an optimized frequency-based
code map and changing the transform granularity to 64 bits
for applications with double types.

1) Code map optimization: We now compare our code map
to an optimized code map that aims to minimize the number
of bits used by statistically analyzing outputs and assigning the
shortest codewords to the symbols observed most frequently
(similar to Huffman encoding, but targeting the run length
encoding and frequent patterns we chose). We use the Rodinia
INT applications as the training input and test all applications.
Despite including the training set in the tests, the statistically
optimized code provides marginal benefits (4.09/1.89/2.45
with the original code map vs. 4.12/1.89/2.46 optimized for
INT/FP/Mixed applications, respectively). This is because
nearly all the savings are from replacing long sequences of
zeros and the specific code map does not matter much.

2) BPC with 64-bit symbols: The other configuration we
tested is a BPC layout targeting 16 64-bit symbols instead of 32
32-bit symbols when the data has 64-bit types. The compression
ratio of R.LMD, whose data is mostly double, improves from
1.11 to 1.21. The improvement is small because of the inher-
ently high entropy of doubles, smaller bit-planes (31-bit to 15-
bit), and the bigger base symbol, which is not compressed well.

B. Hardware Overhead Evaluation

We implement a Verilog model of the compressor and
conclude that BPC has a competitive gate count compared
to existing compressors. On a compressor core (Figure 3a), we
add a buffer block, which receives 256-bit data every cycle from
a 64-bit GDDR interface to build a 128B block over 4 cycles.
DBX transforms the buffered data in 1 cycle, and each DBP
and DBX bit-plane is compressed individually using bit-plane
compressors. To save area, we reuse 9 bit-plane encoders over
4 cycles to process 33 bit-planes. As the outputs of the original-
symbol encoder, bit-plane encoder, and ZBP-RLE have variable

compressed sizes (and can vary at single-bit granularity), careful
effort was taken in the design of the concatenation logic
to reduce area. The concatenation logic receives up to 9
compressed data blocks per cycle and concatenates them while
concurrently shifting previous results for alignment using a
2-stage pipeline. The final compression latency is 11 cycles.
If the entire 128B is available within a cycle (e.g., read over
a wide interface from a cache), the 4 cycle buffering latency
is unnecessary, reducing the overall latency to 7 cycles.

We synthesize our design using 40nm TSMC standard
cells [37] at 800MHz. The overall area is 48,000µm2, which
corresponds to roughly 68K NAND2 gates. The breakdown of
the area is 17% for Transform block and its buffers, 5% for
9 DBX encoders and 1 OrigEncoder, 48% for Concatenation,
and the rest for pipelining registers, etc. This area overhead
is comparable to existing compressors (40K gates for C-pack)
and does not represent a large amount of chip real estate
considering the billions of gates available in recent processors
and the large potential savings in memory capacity and
bandwidth. We evaluate the performance of BPC together
with the packetized protocol in the next section.

C. System Performance Evaluation

Experiments in Sections V-A and V-B show that BPC
provides a high compression ratio with little overhead. We
now evaluate the memory throughput and performance benefits
this provides below. Before delving into results, we first
describe the evaluation platform, including the details of the
proposed packetized interface.

1) Evaluation setup and the packet-packing architecture:
We evaluate BPC with GPGPU-Sim v3.2.2 [38] running the
benchmarks listed in Table I with the configuration detailed in
Table 4b. Figure 4a presents an overview of the system, which
integrates BPC into a GPGPU with HMC-like memory. To
model HMC-like memory, we replace the 6 GDDR5 channels
of the baseline GPGPU (modeled after the NVIDIA GTX480)
with a single 6-vault HMC-like memory that has a pair of
unidirectional links. The bandwidth of each link is 90GiB/s
(in one direction) and the total bandwidth matches that of the
6 GDDR5 channels of the baseline, for which the applications
have been tuned. BPC uses variable-length output symbols
and provides very high compression for some blocks. HMC
packets provide a small 16B access granularity (i.e. FLIT size),
reducing internal fragmentation and allowing the bandwidth
savings from compression to be realized. We also modify
the HMC protocol to eliminate fragmentation entirely by
relying on hardware to partially decode compressed packets to
compute their length and perform alignment. We test two link
configurations: a conventional Unpacked Packets (UP) and our
proposed Packed Packets (PP) protocol. In UP configuration,
a compressed block transfers as a single variable-length packet,
broken down into a sequence of 128-bit FLITs along with a
64-bit head and a 64-bit tail. Because of internal fragmentation

A 35% margin in clock period is used to model wire-load delays and other
uncertainties.
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(b) The GPGPU-Sim simulation configuration (based on an NVIDIA GTX480).
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Fig. 4: The BPC performance and throughput enhancement
evaluation environment.

and the head/tail overheads, the effective compression ratio
with UP can be significantly worse than that of BPC itself. For
example, with a 7:1 compression ratio a 1024-bit packet should
require just 146 bits, however, with internal fragmentation and
head/tail information the link must transfer 384 bits rather than
the full 1152 bits—an effective compression ratio of just 3:1.

To overcome this limit, we propose PP to densely pack
compressed data. In Figure 4c, compressed data (A) occupies
only a part of a packet. With PP, the left-over space is shared
with the following compressed data blocks B, C, and D. Tag

0
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4

x1/16 x1/8 x1/4 x1/2 x1
(180GB)

x2 x4

N
o

rm
al

iz
e

d
 IP

C
 

Normalized Link Bandwidth 

SM=15,MC=6, No comp SM=15,MC=6, BPC
SM=60,MC=6, No comp SM=60,MC=6, BPC
SM=60,MC=24, No comp SM=60,MC=24, BPC

Fig. 5: Simulated IPC on the R.B+T benchmark, varying
the link bandwidth, number of SMs, and number of GDDR5
channels. The baseline (GTX480) has 15 SMs and 6 GDDR5
channels with 90GB/s one-way link bandwidth.

information for B and C is stored along with their compressed
data to identify the original requests. TAG for D, which
spreads over two packets, resides in the head field of the
second packet (which has unused bits) to minimize overhead.
We do not employ head/tail optimization techniques (e.g.
header compression [39], jumbo frame [40]), which can
help translate compression ratio into even greater savings by
reducing the base transmission overhead.

For a write operation, the link controller (memory controller
equivalent) on the processor compresses the data block and
transfers the compressed block over the link. The memory
receives the compressed data and stores it in memory in its
compressed form. With PP, the memory decodes the prefixes
of received data before storage (no actual decompression, but
decodes the symbols) to determine overall compressed size
and separates and aligns packed blocks based on the size.

For read operations, memory fetches the compressed data
from storage, partially decodes it to calculate the compressed
size and transfers the compressed data over the link. An
alternative to partial decoding is to maintain a table of
compressed sizes [33]. However, we prefer the higher storage
efficiency and simpler overall architecture of partial decoding,
despite the 4 cycles of latency it adds. The link controller
in the processor receives the compressed data and fully
decompresses it before returning it to the cache controller.
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In our evaluation, we increase one-way link latency by
6 DRAM cycles to model the packetization and SERDES
(SERializer and DESerializer) overheads of the new interface.
The transmission delay of the one-way link is assumed to be
the same as the GDDR5 bidirectional link of the baseline. With
compression, we add 15 more DRAM cycles to the latency:
11 cycles for full compression/decompression and 4 cycles for
partial symbol decoding. While BPC can decompress some
blocks with VWC faster than others, we conservatively use
11-cycle latency based on the worst scenario because a slow
decompression can delay subsequent decompressions due to
a resource dependency. We only compress 128B blocks as
such blocks dominate the memory read traffic we observe in
GPGPU-Sim. We transfer other block sizes uncompressed.

2) Performance and Memory Throughput Enhancement:
BPC + PP can enhance memory throughput and reduce
bandwidth requirements. When performance is bound by
available memory bandwidth, enhancing memory throughput
can also improve performance. We explore the relation between
compression, memory throughput, and performance in detail
for the R.B+T benchmark (Figure 5) and then show a summary
of results for Rodinia benchmarks (Figure 6).

Figure 5 shows the performance of R.B+T with and without
BPC (using PP links) as available pin bandwidth is varied and
for different levels of peak compute and maximum memory
bank parallelism. The results show five important trends. First,
the blue lines, which show the behavior with the baseline (15
SMs) with (dashed) and without compression (solid), demon-
strate that BPC can maintain application performance even as
bandwidth is reduced to 1/8 of the baseline 180GiB/s and even
at 1/16 of the bandwidth, performance degradation is very small.
In contrast, performance without compression degrades sharply
starting at a factor of 1/4. Second, while BPC compresses
the memory traffic data of R.B+T by 10.6:1 on average, the
throughput is enhanced by only about a 4:1 ratio because of
the link overheads (head/tail and write-response packets).

The three other observations relate to performance
improvement. Third, when increasing peak performance by
4× (60 SMs), performance is limited by the available bank
level parallelism provided by the 6 vaults in our baseline
configuration. Performance increases by only 2.2× despite the
4× increase in compute resources (red lines). When increasing
bank level parallelism by 4× to 24 cores, performance is
increased by 3.6× (green lines). Fourth, in both cases of
higher peak performance, BPC is able to deliver performance
with lower physical bandwidth. In fact, when enough bank
parallelism is provided, performance degrades to only 3.2×
baseline with BPC at 1/16 the baseline bandwidth, but drops
all the way to baseline performance at that bandwidth without
compression. Fifth, when both bank parallelism and compute
parallelism are increased by 4× and available memory
bandwidth is high, there is a small penalty from compression:
peak performance with compression is 1.4% lower than without
compression. We attribute this to the fact that with so much
compute parallelism, the pointer-heavy R.B+T graph code is
impacted by latency, even with the GPGPU architecture.

To show the benefits of compression in a different way, we
evaluate the minimum physical link bandwidth required to meet
a certain performance target for Rodinia benchmarks. For each
benchmark, we measure its performance (average IPC) with the
baseline configuration, with BPC and UP links, with BPC and
PP links, and with C-pack and PP links. We gradually reduce the
available bandwidth and use linear interpolation to estimate the
minimal bandwidth required to match or exceed 90% and 95%
of the baseline performance. We exclude R.PART and R.LUD
because they do not suffer any performance degradation even
at 1/16 the baseline bandwidth and also exclude R.SRAD and
R.LMD, which did not execute to completion in this experiment.

Figure 6 summarizes the results and demonstrates five
important points. First, BPC can reduce physical data
bandwidth requirements significantly with only small impact
on performance. R.BFS, R.KMN, R.GE, R.HYS, R.DWT, and
R.CFD utilize more than 2/3 of the 90GB/s one-way bandwidth
without compression and reducing bandwidth significantly
degrades performance. With compression, we can achieve
similar performance with far less bandwidth. For the most
bandwidth-demanding applications, BPC provides a significant
performance improvement even with the 15-SM baseline
configuration (15% and 18% for R.BFS and R.KMN). Most
other applications are affected little (±2.5%), except R.NW
which suffers a 5.8% performance degradation because it has
limited parallelism and is affected by the added compression
latency. Our second observation is that BPC with PP links is an
effective combination. On average it can achieve 90% and 95%
of the performance for these benchmarks with 2.0× and 1.9×
less bandwidth, respectively (line graphs referring to the right
axis). BPC +UP and C-pack+PP, on the other hand reduce
bandwidth by only 1.8× and 1.7× for the same goals. The third
observation is that memory throughput enhancement correlates
well with compression ratio and the better compression of BPC
realizes higher bandwidth reduction than C-pack. Fourth, PP is
effective at reducing link overheads and always achieves higher
throughput enhancements than UP. Finally, compression does
add memory latency and in some cases it degrades performance.
R.NW with compression was unable to achieve 95% of
baseline performance regardless of the amount of available BW.

VI. CONCLUSION

Due to exploding amounts of data and constrained pro-
gramming models, most data in many-core architectures are
stored in arrays. We observe that many of the arrays are
homogeneously-typed and design a novel data transformation to
improve the inherent compressibility of such data with reduced
compressor complexity. The DBX transformation lowers the
data entropy and generates long sequences of zeros. The
lightweight BPC compressor efficiently encodes the output of
the transformation and achieves significantly better compression
ratios than prior main memory link compressors. These bit
savings from compression can improve system-level perfor-
mance by lowering link bandwidth requirements or increasing
computation throughput on bandwidth-constrained systems.
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