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Abstract. This paper describes and evaluates a scalable and efficient resilience scheme based on the concept of containment
domains. Containment domains are a programming construct that enable applications to express resilience needs and to interact
with the system to tune and specialize error detection, state preservation and restoration, and recovery schemes. Containment
domains have weak transactional semantics and are nested to take advantage of the machine and application hierarchies and
to enable hierarchical state preservation, restoration and recovery. We evaluate the scalability and efficiency of containment
domains using generalized trace-driven simulation and analytical analysis and show that containment domains are superior to
both checkpoint restart and redundant execution approaches.
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1. Introduction

Reliability and resilience are major obstacles on the
road to exascale computing. The growing number of
components required for exascale systems and the de-
creasing inherent reliability of components in future
fabrication technologies may result in error and fault
rates that are orders of magnitude higher than those
of petascale systems today. Current reliability and re-
silience techniques simply cannot cope with the simul-
taneous increase in scale and fault rates while main-
taining high efficiency.

We present containment domains (CDs), a new ap-
proach for achieving low-overhead resilient and scal-
able execution. CDs abandon the prevailing one-size-
fits-all approach to resilience and instead embrace the
diversity of application needs, resilience mechanisms,
and the deep hierarchies expected in exascale hardware
and software. CDs give software a means to express re-
silience concerns intuitively and concisely. With CDs,
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software can preserve and restore state in an optimal
way within the storage hierarchy and can efficiently
support uncoordinated recovery. In addition, CDs al-
low software to tailor error detection, elision (ignoring
some errors), and recovery mechanisms to algorithmic
and system needs. To achieve these goals, CDs rely
on five key insights: (1) different errors and faults can
be tolerated most efficiently in different ways; (2) ma-
chines are becoming increasingly hierarchical and this
hierarchy can be exploited to reduce resilience over-
head; (3) scalable execution requires uncoordinated lo-
cal recovery for common-case errors; (4) it is often
more efficient to trade off lower error-free execution
overheads for higher recovery overheads; and (5) care-
fully designed and analyzed algorithms can ignore, or
efficiently compensate for, some errors without resort-
ing to rollback and re-execution.

Containment domains are programming constructs
for incorporating these insights within a programming
model and system. CDs have weak transactional se-
mantics and are designed to be nested to form a CD
hierarchy. The core semantic of a CD is that all data
generated within the CD must be checked for correct-
ness before being communicated outside of the domain
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and that each CD provides some means of error recov-
ery. Failures in an inner domain within the CD hierar-
chy are encapsulated and recovered by the domain in
which they occur – therefore, they are contained with-
out global coordination. A specific error may be too
rare, costly, or unimportant to handle at a fine granu-
larity. For this reason, an inner CD can escalate cer-
tain types of errors to its parent. This flexibility of ex-
pressing how and where to preserve and restore data,
as well as how to recover from errors, sets CDs apart
from prior system-level reliability schemes.

CDs enable a new range of resilience tradeoffs and
can significantly improve application efficiency and
performance relative to prior reliability approaches.
We demonstrate the potential benefits of CDs by sim-
ulating synthetic application models with error injec-
tion. The application models are based on a set of mini-
applications that we map to CDs and span a range of
characteristics that impact CD effectiveness. We com-
pare CDs to previously proposed techniques across a
range of machine scales and error models. We show
how CDs flexibly utilize the five insights described
above to improve resilience overheads and provide su-
perior scalability. To summarize the key aspects of the
CD approach are:

(1) Hierarchical preservation and restoration enables
localized handling; errors that can be recovered
locally are handled by the innermost CD in a
cost-effective manner.

(2) Specialized and hierarchical state preservation
effectively utilizes the storage hierarchy and re-
duces preservation volume, overcoming the low
bandwidth and high error rates associated with
system scaling.

(3) The transactional semantics of CDs improve
scalability, and uncoordinated recovery enables
applications to tolerate high error rates on very
large systems. While prior approaches drop be-
low 50% efficiency for large systems with high
error rates, CDs remain efficient.

(4) The structure imposed by the CD abstraction ex-
presses resilience schemes in a way that is both
general and amenable to automatic analysis and
tuning.

The rest of the paper is organized as follows: we
compare and contrast CDs with prior work in Sec-
tion 2, describe the CD framework and its use in Sec-
tion 3, develop a flexible analytical model for CDs and
uncoordinated recovery in Section 4, summarize our
evaluation methodology in Section 5, present the eval-
uation results and discuss their implications in Sec-
tion 6 and conclude the paper in Section 7.

2. Background and related work

System-level reliability has been addressed in a va-
riety of ways through prior work spanning many years.
Containment domains are necessitated by the increas-
ing need for an efficient, comprehensive, and flexible
mechanism to handle all errors in the most appropri-
ate manner, and draw concepts and inspiration from
this large body of work. Related work includes the dis-
tributed, hierarchical checkpointing used in large-scale
systems as well as programming languages which use
hierarchical transactional semantics to interface with
checkpointed state.

Checkpointing is a generic state preservation and
restoration mechanism which is widely used by large-
scale compute clusters to tolerate failures. Many cur-
rent systems take a global checkpoint and restart
(g-CPR) approach, and establish a synchronized pro-
gram state of every node in a centralized location.
Global checkpointing, however, is not feasible in fu-
ture systems – application working set sizes are in-
creasing, while I/O bandwidth for transferring data to
a centralized non-volatile location scales poorly.

Researchers have proposed coordinated local check-
point and restart (l-CPR) to distribute state preserva-
tion and to overcome some of the inefficiency associ-
ated with centralized global checkpoints. Local check-
points store the state of each node in a distributed
fashion and are faster and more scalable than global
checkpoints. While the checkpoints are stored locally,
all checkpoint and recovery actions are globally co-
ordinated and may perform poorly when failure rates
are very high. A naive implementation of local check-
pointing, however, cannot recover from permanent
node failures. Accordingly, infrequent global check-
pointing is often combined with local checkpointing
to tolerate such failures [28,36]. Local checkpoint-
ing schemes may utilize DRAM [5,29], non-volatile
memory [9] or other methods to gain efficiency. How-
ever, their motivation and operation remains funda-
mentally the same. Moody et al. further generalize
local/global checkpointing into scalable multi-level
checkpoint and restart (SCR) [24]. Hierarchical check-
pointing (h-CPR) employs multiple checkpoints with
differing costs and levels of error coverage. This multi-
level approach can improve efficiency by speeding
up the recovery of common-case errors, while using
slower and more powerful checkpoints to preserve
functionality.

In addition to coordinated l-CPR, researchers have
suggested recovering checkpoints and re-executing
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without coordination between nodes. Uncoordinated
distributed checkpointing, however, may result in the
domino effect [31] – given an arbitrary set of interact-
ing processes with distributed checkpoints, a single er-
ror local to one process can cause all processes to com-
pletely roll back. Common approaches to eliminate the
domino effect include communication logging [1,11,
13] and coordinated checkpointing based on communi-
cation history [19,20]. Such mechanisms, however, of-
ten sacrifice a certain degree of process autonomy and
incur extra (often unpredictable) run-time and messag-
ing overheads [37].

Unlike checkpointing schemes, other existing re-
liability approaches allow for fine-grained and flex-
ible programmer control. Randell’s recovery blocks
(RBs) [31] hierarchically decompose a program into
nested elements. Each Recovery Block is implemented
in two independent-yet-equivalent routines and a func-
tionality check. If a recovery block executes incor-
rectly, the secondary (fault-tolerant) routine is exe-
cuted. Properly implemented recovery blocks may tol-
erate hard, soft, or software errors, and the programmer
can nest blocks such that an parent block can resolve
an error from an inner child.

Transactional programming is primarily used
for controlling concurrency in shared-resource sys-
tems [22], but it can also be used to enforce reliability.
Transactions, if so defined, can be nested to any depth.
The nested transaction structure is naturally used to lo-
calize the effects of failures within the closest possi-
ble level of nesting in the transaction tree. This style
of programming, including [7,21,26,32], is a general-
ization of the recovery block to the domain of concur-
rent programming. A significant challenge and source
of inefficiency with such transactions is that each trans-
action must be made durable to guarantee recovery, re-
sulting in storage and contention issues similar to those
of checkpointing schemes.

Recent research on transactional memory (TM) [14,
16,25] mainly aims to enable efficient concurrent and
lock-free programming. Transactional memory inher-
ently provides state preservation and restoration at
transaction boundaries. There has been prior work that
extends transactional memory concepts to reliability,
including Relax [8] and FaulTM [38]. Both use TM-
like semantics for hardware/software collaborative re-
liability; both provide state preservation and restora-
tion at a transaction boundary. These techniques, how-
ever, can only tolerate soft errors in computation and
memory that can be detected while a transaction is still
running.

2.1. Advantages of containment domains

Containment domains share some features and
strengths with all the above approaches, but offer sub-
stantive usability and efficiency improvements (see
Section 3). The hierarchical state preservation and
restoration capabilities of CDs are similar in concept to
multi-level distributed checkpoints. However, the flex-
ibility of CDs allows the programmer and software
system to tune the location and method of preserva-
tion and recovery to meet a desired level of reliabil-
ity while maximizing the performance of the system.
Generic checkpointing approaches, on the other hand,
only have the notion of time intervals between state
preservation and restoration; the programmer has little
control, thus making these checkpoints inefficient and
inflexible to application needs. As described in this pa-
per, CDs are not susceptible to the domino effect be-
cause of their transactional qualities.

Conceptually, CDs are similar to recovery blocks –
each constrains the detection and correction of errors
to a local boundary, and each is able to pass uncor-
rectable errors upwards to be handled by the parent do-
main or block. CDs are, themselves, a limited form of
hierarchical transactional programming. Unlike other
transactional programming models, CDs allow more
aggressive optimization by fully exploiting the stor-
age hierarchy and by allowing the partial preservation
and selective rematerialization of data. By flexibly us-
ing a range of error detection and correction mecha-
nisms, CDs also allow for varying levels of reliability
and performance depending on application needs. Us-
ing a range of error protection mechanisms also allows
CDs to avoid the shortfalls of TM – CDs are able to
provide high levels of reliability against a variety of
errors, including permanent machine faults.

3. Containment domains

Each containment domain has four explicit com-
ponents, which enable the application to express re-
silience tradeoffs and take advantage of the key in-
sights described in Section 1. The preserve compo-
nent locally and selectively preserves state for recov-
ery. This preservation need not be complete – unpre-
served state, if needed, may be recovered from else-
where in the system or rematerialized. The body is then
executed, followed by a detect routine to identify po-
tential errors. Detection is always performed before the
outputs of a CD are committed and advertised to other
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CDs. Detection can be as simple as utilizing underly-
ing hardware and system mechanisms or may be an ef-
ficient algorithm-specific acceptance test. Specialized
detection can also be designed to ignore errors that
are known not to impact the running computation. If
a fault is detected, the recover routine is initiated. Re-
covery may restore the necessary preserved state and
re-execute the CD, or it can escalate the error to the
parent CD.

As explained in Section 1, CDs are designed to
be hierarchically nested; failures in an inner domain
are encapsulated and recovered by that inner domain
whenever efficiently possible. Erroneous data is never
communicated outside of a CD, and there is no risk of
an error escaping containment. Because of constraints
on available storage, bandwidth, and the need for inter-
CD communication, some errors and faults are too rare
or costly to recover at a fine granularity. If such an er-
ror occurs, an inner CD escalates the error to its parent,
which in turn may escalate it further up the hierarchy
until some CD can recover the error. Potentially, an er-
ror may be escalated to the root of the CD tree, which
is functionally equivalent to recovery through g-CPR.
Figure 1 gives the organization of a hierarchy of nested
CDs, with their four components shown.

3.1. Illustrative example

To make the explanations below more concrete we
show a simple and illustrative example through itera-
tive sparse matrix–vector multiplication (SpMV). This
computation consists of iteratively multiplying a con-
stant matrix by an input vector. The resultant vector is
then used as the input for the next iteration. We assume

Fig. 1. The organization of hierarchical CDs. Each domain has four
components, shown in color. The relative time spent in each compo-
nent is not to scale. (Colors are visible in the online version of the
article; http://dx.doi.org/10.3233/SPR-130374.)

Fig. 2. Sequoia-style pseudocode for SpMV with CD API calls. (Col-
ors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-130374.)

that the matrix and vector are block partitioned and as-
signed to multiple nodes and cores. This simple appli-
cation demonstrates many of the features of CDs and
how they can be used to express efficient resilience. We
evaluate these features in depth using multiple mini-
applications later in the paper.

Figure 2 provides high-level pseudo-code for SpMV.
The program structure and syntax are inspired by the
Sequoia programming model [12] with explicit CD
API calls [6] and target the hierarchical machine shown
in Fig. 3. The root-level task performs the iterative
computation by hierarchically decomposing the ma-
trix multiplication. Hierarchy is formed through a di-
vide and conquer decomposition by recursively call-
ing SpMV to form a tree of tasks. The leaves of the
tree perform sub-matrix multiplications that are then
reduced into the final result. Each compute task is en-
capsulated by a CD with its own preservation and re-
covery routines, which we will explain in the subsec-
tions below. The hierarchy of the CD tree is created
by nesting domains using the parentCD handle; the
full management of these CD handles is not shown for
brevity. The syntax given in Fig. 2 is for illustrative
purposes and is based on an initial research prototype
of CDs that is currently under development.

Table 1 summarizes how the SpMV program is par-
titioned into CDs and then mapped to the machine.
We focus on representative error types and how they
are protected with CDs. We also summarize what data
is preserved at each level and how it is preserved –
whether data is recovered locally (L), through a parent
(P), or through a sibling (S). Note that we form our ex-
ample with a deep CD hierarchy to illustrate the poten-
tial uses of containment domains. Later, when evaluat-
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Fig. 3. An example system with 6 potential levels of CDs. Based on the configuration of [24]. (Colors are visible in the online version of the
article; http://dx.doi.org/10.3233/SPR-130374.)

Table 1

Protecting SpMV with CDs

Error component
type

CD
level

Preservation method

Min Vin Vout

Datapath Soft 0 P P L

L1 cache Soft 1 P S L

L2 cache Soft 1 P S L

Core Soft 1 L S L

DRAM Soft 2 L S L

Processor Hard 3 L S L

Node Hard 4 L S L

Cabinet Hard 5 L S L

ing the CD approach with a reasonable error model, the
optimal mapping does not utilize CDs at a level finer
than the processor–core granularity.

Figure 4 gives another example of the CD partition-
ing and mapping process. The application shown is
a Monte Carlo neutron transport problem, and is de-
scribed later in Section 5.3. Computation occurs in leaf
CDs; leaves are grouped together under parent CDs,
which are in turn nested. This nested CD structure is
amenable to automatic analysis and optimization and
we describe a tool that can be used to explore and auto-
tune the design space in Section 4.

3.2. Hierarchical and partial preservation

One of the advantages of containment domains is
that preservation and recovery can be tailored to ex-
ploit natural redundancy within the machine. A CD

does not need to fully preserve its inputs at the do-
main boundary; partial preservation may be utilized
to increase efficiency if an input naturally resides in
multiple locations. Examples for optimizing preserve/
restore/recover routines include restoring data from
sibling CDs or other nodes which already have a copy
of the data for algorithmic reasons.

The SpMV program in Fig. 2 exhibits natural redun-
dancy which can be exploited through partial preserva-
tion and specialized recovery. The input vector is dis-
tributed in such a way that redundant copies of the vec-
tor are naturally distributed throughout the machine.
This is because there are N0 × N0 fine-grained sub-
blocks of the matrix, but only N0 sub-blocks in the vec-
tor. If a fault occurs that requires the recovery of an in-
put vector for a CD, the vector is copied from another
domain that holds it, as indicated in Fig. 2 through the
call to add_to_CD_via_parent. The CD which
sends recovery data is determined by the parent of the
faulting CD and is chosen to maximize locality, thus
minimizing the bandwidth and power strain on lim-
ited resources. Figure 5 shows how the input vector of
SpMV can be recovered from multiple sources (either
directly from the parent or through a sibling CD), even
if it was not preserved locally by the faulty leaf CD.
Such partial preservation tradeoffs cannot be easily ex-
pressed or exploited by prior resilience models.

The inner CDs in the hierarchy specify that the input
matrix should be preserved explicitly, ideally in non-
volatile memory (through the add_to_CD_via_
copy call in Fig. 2). Each node has its own unique
portion of the matrix, and thus the matrix can only be
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Fig. 4. Mapping example of neutron transport. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-130374.)

Fig. 5. Examples of recovery using the natural redundancy of
SpMV. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-130374.)

restored from explicitly preserved state. If the matrix
is not preserved, data corruption may be unrecover-
able, except by rolling back to the root CD at great
cost. When mapping to the example system (Fig. 3),
every CD responsible for protecting against failures in
DRAM, nodes and cabinets preserves the matrix “lo-
cally” to their domain (e.g., using a buddy approach),
and can thus recover locally as well. CDs responsible
for protection within a processor, on the other hand,
may or may not preserve the matrix depending on the
expected soft-error rate. If the matrix is not preserved,
it will be restored by re-fetching the data from the par-
ent. Such flexible state preservation optimizations have
been proposed in the past and have also been expressed
as automatic analysis algorithms [4,27]. CDs enable
such automation without changing the underlying re-

silience paradigm while still providing the programmer
with explicit control when needed.

The flexibility of CDs allows the application writer
or runtime system to balance the overhead of preserv-
ing state at each level of hierarchy at the cost of recom-
puting or refetching data which was not locally pre-
served. Optimizing this tradeoff is critical in order to
avoid excessive preserved state which can waste valu-
able storage, bandwidth, and energy. We show how
these crucial tradeoffs are amenable to automatic opti-
mization in Section 4. Later, in Section 6, we demon-
strate how these tradeoffs impact performance and ef-
ficiency for a range of machine and application char-
acteristics.

3.3. Flexible error detection and recovery

We now describe how CDs enable flexible detection
and recovery in combination with the state preserva-
tion and restoration schemes described above. The first
step towards resilience is to detect errors and faults.
Fault detection is not the focus of this paper and we
assume that the hardware and runtime system support
the detection of errors and faults in memory and com-
pute modules. It is, however, rare for current systems to
support error detection for arithmetic operations. For-
tunately, the CD framework does not depend on full
error detection support, and can evolutionarily exploit
improved error detection capabilities as they become
available. In cases where silent data corruption is in-
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tolerable and the system does not provide complete
error detection, the CD methodology can encapsulate
the ideas of instruction or task duplication and can in-
tegrate them with the CD preservation and recovery
mechanisms. In some systems, duplication-in-space is
preferable and may improve performance.

Another interesting tradeoff that is natural within
the containment domains framework is the inclusion of
selective algorithmic-based fault tolerance. Algorith-
mic techniques can offer tremendous reductions in the
overhead of error detection and correction, but may re-
quire certain guarantees for some portions of the code,
as with fault-tolerant iterative methods [18]. With CDs,
it is easy to tune the level of redundancy and reliabil-
ity and to trade it off with resilience inherent to the al-
gorithm. A simple example is to utilize duplication to
selectively increase the reliability of susceptible CDs,
while saving this extra overhead from inherently re-
silient CDs.

Recovery from soft errors requires re-executing a
CD, which may include re-establishing its context after
certain control failures. To recover from hard failures
that disable a node (or group of nodes), the application
must interact with the system to either request that new
resources be mapped in (e.g., spare nodes) or to re-
map its tasks onto a reduced-capability machine. The
CD framework enables this application-level remap-
ping. We anticipate, given the scale of future machines
and the reliability trends of individual devices, that de-
graded operating will become necessary. While CDs
allow remapping for graceful degradation without a
change in paradigm, we do not discuss this aspect of
recovery further in this paper.

Finally, in addition to the ability of CDs to fully uti-
lize the memory hierarchy and to minimize the average
restoration latency, the CD recovery routine offers an
orthogonal area of potential performance optimization.
Taking into account the relative availability of memory
and CPU bandwidth for a given failure, an intelligent
recovery routine may be able to trade off the advan-
tages of restoring the inputs of a faulty structure versus
rematerializing those inputs from a reduced amount of
state. While we believe this ability may be used to im-
prove the performance and scalability of CDs, a de-
tailed analysis of rematerialization is left for future
work.

An important property of CDs is their weakly trans-
actional nature. The recovery procedure described
above is not coordinated between the different CDs.
Instead, it is initiated locally by a faulting CD and
propagates up the hierarchy to the closest CD that can

contain and recover the fault. This has several impor-
tant advantages. First, no global barrier is imposed
by the resilience scheme, improving scalability. Sec-
ond, the recovery of multiple independent errors in dif-
ferent parts of the system can be overlapped, further
improving scalability. These transactional semantics,
however, disallow communication between concurrent
CDs. This restriction may constrain the mapping of an
application into the CD framework, and may reduce
the advantages of CDs accordingly.

3.4. Relaxed CDs

As described above, the strict CD hierarchy ensures
that uncoordinated recovery is possible, but prohibits
communication between concurrent CDs. If two par-
allel tasks need to communicate, they must both be
within the same CD context. This restriction may intro-
duce significant overheads in some cases. An illustra-
tion of this overhead is shown on the left hand side of
Fig. 6. In this example, each inner CD requires signifi-
cant preservation to ensure that common errors can be
recovered entirely by re-executing the inner CD. Local
recovery is essential because the communication pat-
terns limit the depth of the CD hierarchy, increasing
the cost of escalation to encompass all 12 inner CDs of
this example. As an alternative to strict CDs in such a
case, we offer the relaxed CD variant.

Relaxed CDs permit communication between con-
current domains. This requires the ability to log all
communication into a CD. In addition, as with strict
CDs, all data must be verified for correctness be-
fore being communicated. Given that only correct data
is communicated, a failing CD may restore and re-
execute in an uncoordinated manner by replaying re-
ceived communications using its local log. Outbound
communication is squashed during replay because the
receiver cannot respond to an unexpected communica-
tion. In this manner, relaxed CDs allow uncoordinated
recovery in the presence of communication (at the cost
of some increased book-keeping overheads). This en-
ables a new set of preservation/overhead tradeoffs as
shown on the right hand side of Fig. 6.

Another possible use case of relaxed CDs is in situ-
ations where multiple tasks communicate in a chained
fashion (taski+1 depends only on communication from
taski). In such a scenario, strict CDs effectively impose
a non-programmatic barrier because all tasks must be
within the same parent CD to communicate. This prob-
lem does not exist with relaxed CDs.
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Fig. 6. Illustration of the tradeoffs between strict and relaxed CDs.
(Colors are visible in the online version of the article; http://dx.
doi.org/10.3233/SPR-130374.)

4. CD mapping, tuning and modeling

Mapping an application to CDs involves two main
parts. The first is identifying the application-specific
CD properties (which are generally machine-agnostic);
the second is mapping the application to a specific ma-
chine with information about the storage and band-
width hierarchy, machine scale and expected error
model. The CD properties are represented by the struc-
ture of the CD tree and the properties of each CD in
the tree. The CD tree conveys information on paral-
lelism, locality, communication and synchronization.
Each CD within the tree specifies both the volume of
data implicitly used by the CD from its parent and the
volume of data communicated to it by its siblings. The
CD also specifies which preservation methods are pos-
sible for each input. These machine-agnostic charac-
teristics can ideally be determined by a compiler or
profiler from the CD-annotated source code, but were
extracted manually for this paper.

After the first stage of mapping, the CD tree is still
abstract and has not yet targeted a specific machine.
The exact instantiation of the tree and choice of preser-
vation/restoration methods are determined during the
second mapping phase. Finding the optimal mapping
of the application onto a machine is challenging be-
cause of the numerous optimization options offered by
CDs and the difficulty of estimating expected perfor-
mance in large systems. Fortunately, the concise ab-
stractions of CDs are amenable to automatic tuning and
optimization using the CD characteristics. Towards
this end, we developed a tool that takes a high-level
description of an application structure and automati-
cally sweeps the CD design space. The modeling tool
can be used to determine tradeoffs such as: (1) what
level of storage should be used for each preservation;
(2) whether the CD hierarchy should be made deeper
or more shallow to trade off localized recovery with
preservation overheads (levels can be arbitrarily added
or removed, so long as communication and synchro-

nization semantics are preserved); (3) whether relaxed
CDs provide compelling benefits for the application;
and (4) whether data should be preserved locally, re-
covered from elsewhere in the machine, or rematerial-
ized (trading off preservation and recovery overheads).
We use the tool to map the applications and report the
results, which are verified with a simulator, in Sec-
tion 6.

4.1. Model assumptions

To simplify the analytical model and focus on the
mapping and analysis of CDs, we make several as-
sumptions. At the machine level, we assume that there
are sufficient spare nodes and cabinets to recover from
errors and that those spares can be brought on line
quickly without slowing down the recovery process.
Prior work has shown that this assumption is reason-
able given typical fault rates and repair times [10,30].
For the error model we assume the presence of multi-
ple independent fault/error processes that affect differ-
ent aspects of the system. Each CD has an error rate as-
sociated with those errors it can locally recover (with-
out escalation). We then associate these error processes
with different levels of CD recovery. Finally, we as-
sume that events within each error process are inde-
pendently and identically distributed. Our error model
is described in greater detail in Section 5. The implica-
tion of these assumptions is that we can use a binomial
model for CD failure and re-execution: the probability
that a CD fails, p, is directly proportional to its run time
and the sum of all error rates that it contains.

At the execution model level, we assume that all er-
rors associated with a CD are equivalent, regardless
of their type and when they occur. Preservation and
restoration may be asymmetric, but we do not account
for errors triggering different forms of recovery in the
same level of the CD tree. When a CD experiences an
error, it restores its preserved state from the location
at which it was preserved and then reexecutes the CD
body. We assume zero overlap between execution and
recovery; the extra time required for recovery is added
to the time of a faulty CD. Recovery of different sib-
lings, however, can proceed in an uncoordinated fash-
ion in the absence of a synchronization or blocking
communication.

4.2. Analytical model

Our analytical model estimates the execution time
(performance) and average power consumption (or en-
ergy) of an application. We describe the execution-time
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model first and later discuss power modeling. The per-
formance model accepts a description of the CD tree,
which conveys information on the properties of each
CD, as well as the parallelism, synchronization and
communication boundaries between CDs. Each CD in-
cludes information on the expected preservation and
restoration times (preservation and restoration may be
asymmetric) and leaf CDs also include their expected
execution time, encompassing both the CD body and
any detection overheads. Each CD may have multi-
ple sequential CDs executing within it (which may, in
turn, include nested CDs). Sequential child CDs al-
low us to express preservation, restoration, and exe-
cution at intermediate levels of the CD tree, because
nesting degree may differ for each of the CDs in se-
quence. Note that the analysis tool derives preserva-
tion time and restoration time from the volume of pre-
served and communicated state and available machine
bandwidths. For simplicity, we assume that the param-
eters of a CD are fixed for all of its dynamic instantia-
tions.

Because of the CD hierarchy we need only con-
sider the impact of resilience on two CD levels at any
given time – a parent and its children. Analysis starts
with the lowest two levels, where children are leaves,
and derives the impact of resilience on the parent. At
that point, the parent execution properties are modi-
fied based on the preservation and recovery overheads
associated with it children and the entire two levels
are encapsulated. This process continues until the root
level is reached and the entire application properties
are estimated. Due to this recursive process, we de-
scribe the model with respect to a parent with a set
of child CDs. To explain the model, we present the
performance model in four steps: (1) for a parent CD
that has n identical children that all execute in paral-
lel with no sequential loops; (2) we extend the model
to include serial dependencies; (3) we then allow se-
quential groups of CDs to be heterogeneous; and (4) fi-
nally include asymmetric preservation and recovery
times.

4.2.1. Parent with n identical parallel children
We start with a parent CD that has n identical par-

allel CDs. We first restrict ourselves to the case where
the execution and recovery times for a particular child
CD, Tc are uniform and do not account for execution
variation. When a child fails, it is re-executed in full.
During re-execution, the child CD may experience an-
other error and may re-execute again. When n inde-
pendent parallel CDs are grouped within the parent, the

expected execution time of the parent is directly pro-
portional to the expected maximum number of consec-
utive failures experienced by any one of the n parallel
CDs.

Due to the model assumptions, the number of itera-
tions of each CD follows a geometric random variable.
While the statistics of geometric variables are well un-
derstood, we derive our model from first principles to
allow us to incorporate the more complex behavior
of asymmetric recovery and heterogeneous CDs. Let
q[x,n] be the probability that all child CDs experience
at most x consecutive failures. We then derive d[x,n],
the probability that the child with the most consec-
utive failures experiences exactly x failures and then
succeeds. We derive d[x,n] iteratively by subtracting
the probability that fewer than x failures occur from
the probability that at most x failures occur (thus leav-
ing only the probability of exactly x failures). We use
d[x,n] to compute the expected run time of the parent.
In all equations, we use pc to represent the probability
that a child fails; we derive from the inherent error rate
(p) associated with the child.

pc = Tcp, (1)

q[0,n] = (1 − pc)n, (2)

q[x,n] =

(
x−1∑
i=0

(
pic(1 − pc)

))n

, (3)

d[0,n] = q[0,n], (4)

d[x,n] = q[x,n] −
x−1∑
i=0

d[i,n], (5)

Tparent[x,n] =
∞∑
i=0

(i+ 1)Tcd[i,n]. (6)

4.2.2. Serial dependencies between children
We now include the case where there are n paral-

lel siblings, each responsible for executing m CDs se-
quentially. We follow the same derivation as above, but
extend the definitions of the functions as follows. Let
q[x,m,n] be the probability that each of the siblings
experiences at most x failures in the m serial CDs they
contain. Similarly, d[x,m,n] is the probability that the
sibling with the most failures experiences exactly x
failures before all of its m CDs succeed. This behav-
ior is illustrated in Fig. 7 and the model is shown be-
low.

q[0,m,n] = (1 − pc)m·n, (7)
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Fig. 7. Example of 7 nodes, each executing 2 sequential child CDs.
Some CDs fail and require re-execution, which is overlapped be-
tween nodes with uncoordinated recovery. (Colors are visible in the
online version of the article; http://dx.doi.org/10.3233/SPR-130374.)

q[x,m,n]

=

(
x−1∑
i=0

((
i+m− 1

i

)

× pic(1 − pc)m
))n

, (8)

d[0,m,n] = q[0,m,n], (9)

d[x,m,n] = q[x,m,n] −
x−1∑
i=0

d[i,m,n], (10)

Tparent[x,m,n] =
∞∑
i=0

(i+m)Tcd[i,m,n]. (11)

4.2.3. Heterogeneous CDs
We now extend the model to allow sequential CDs

within a parent to differ. We rely on the assumption
that all error processes are independent and derive the
properties of an equivalent “average” child CD that can
be directly substituted into the model for expected par-
ent execution time. These properties are shown below
assuming there are t CD types, each with its own error
model (different failure probabilities {pi}ti=1) and exe-
cution time {Tc,i}ti=1 (these CDs execute sequentially,
which allows us to generalize the error model easily).
Note that because the re-execution time now depends
on which type of CD failed, we weight the average re-
covery time based on the execution time of each CD
type.

pc,avg =

t∑
i=1

Tc,ipi
t

, (12)

Tc,noerr =

t∑
i=1

Tc,i

t
, (13)

Tc,rexec =

∑t
i=1 T

2
c,i∑t

i=1 Tc,i
, (14)

Tparent[x,m,n]

=

∞∑
i=0

(mTc,noerr + iTc,rexec)d[i,m,n]. (15)

4.2.4. Asymmetric preservation and restoration
Finally, to account for the asymmetric preserva-

tion and restoration times needed for certain preser-
vation tradeoff optimizations, we modify the above
model slightly and replace Tc,rexec with Eq. (16), where
Tc,i,exe is the time to execute the body of CD type i,
Tc,i,prsrv is the time for preservation, and Tc,i,rstr is the
restoration time, which may be different than preser-
vation time. This modification relies on the simplify-
ing assumption that the error rates are low and that the
asymmetry is relatively small (i.e. that compute time
dominates preservation and restoration time)

Tc,rexec

=

∑t
i=1(Tc,i,prsrv + Tc,i,exe)(Tc,i,rstr + Tc,i,exe)∑t

i=1 Tc,i
.

4.2.5. Power model
Because CDs enable localized recovery, execution

resources associated with CDs that are not re-executing
may remain idle. We account for this effect using a
simple model and evaluate the relative power con-
sumed by CDs. We assume that actively executing a
CD has a relative power of 1, while a node that is
idling consumes a relative power of α (α is a machine-
dependent parameter, which we set to α = 0.25 in our
experiments). For a particular parent CD with n paral-
lel children (or child sequences), we estimate the ex-
pected idle time as follows. Assuming that n is large,
the overall expected number of re-executions is sim-
ply n times the average number of times a child re-
executes. Thus, the idle time is the total execution
slots occupied by the parent CD (n times the expected
execution time of the parent) minus the expected re-
executions.

5. Methodology

Evaluating the viability of resilience schemes at ex-
ascale is challenging. Several days of run time (and
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prohibitively many CPU hours) are required to ob-
serve a meaningful number of errors. This necessitates
coarse-grained modeling. We use a combination of a
generalized and simplified trace-driven simulator that
operates at the granularity of CDs and the analytical
model described above. Both the simulator and ana-
lytical model reproduce the essential behavior of re-
silience schemes and follow the execution model of
CDs and the CD mapping parameters as described in
Section 4. We use the simulator on smaller configu-
rations to verify our intuition and to validate the ana-
lytical model, and report results for full-scale systems
using the analytical model only. As mentioned ear-
lier, the CD framework is flexible enough to subsume
and encompass many prior resilience approaches. We
demonstrate this by using our tools to also evaluate
coordinated global checkpointing (g-CPR) and multi-
level hierarchical checkpoint-restart (h-CPR). In the
subsections below we briefly describe the system pa-
rameters, error model, and applications that are used to
evaluate the CD framework.

5.1. System parameters

Table 2 lists the seven system configurations we
use for evaluation. We base the systems on reasonable
assumptions concerning future technology trends to-
wards exascale, targeting the 7 nm technology node.
We assume that each core will have a peak perfor-
mance of 10 GFLOPS and that system performance
scales linearly with the number of cores. We model

main memory based on the expected parameters of fu-
ture memory packaging and advanced I/O technology
that may reach 200 GB/s per socket.

We fix memory capacity at 1 GB per core. We
also assume that high-bandwidth non-volatile memory
(NVM) is integrated within each module (or node).
Integrated NVM may offer about an order of magni-
tude less bandwidth than DRAM and provide about
an order of magnitude larger capacity. We expect that
NVM will be used for preserving local and/or remote
data (buddy storage), assuming that unused DRAM
may be at a premium for many applications. We ex-
pect that intra-module interconnect will not limit band-
width to NVM, but that bandwidth to remote NVM de-
creases by an order of magnitude per level because of
the global network. Lastly, we set the per-core paral-
lel file system bandwidth of the smallest configuration
to 0.001 GB/s/core, based on the bandwidth reported
for the 2.5 PFLOPS Jaguar system [2]; we assume that
global file system bandwidth per core decreases by
10% each time the number of cores doubles.

While we believe our machine configurations are
reasonable, different machines will have different pa-
rameters. We therefore run sensitivity experiments and
vary the ratios of available bandwidths for preserva-
tion. We do not model application execution time di-
rectly and do not attempt to evaluate application scal-
ability beyond the impact of resilience. We do this by
ignoring any potential bottlenecks of communication
and synchronization on the run time of the leaf CDs.
The projected memory capacities and bandwidths are

Table 2

Machine parameters

Parameters 2.5 10 40 160 640 1280 2560

Peak performance (PFLOPS)

Number of cores per socket 64 64 64 128 128 256 256

Number of sockets per module 2 2 4 4 8 8 8

Number of modules per cabinet 32 32 64 64 128 128 128

Number of cabinets 64 256 256 512 512 512 1024

Total number of cores 262,144 1,048,576 4,194,304 16,777,216 67,108,864 134,217,728 268,435,456

Total memory capacity (TB) 256 1024 4096 16,384 65,536 131,072 262,144

Failure in time (FIT)

Processor 1.89E+07 7.55E+07 3.02E+08 1.21E+09 4.83E+09 9.66E+09 1.93E+10

Memory 3.60E+04 1.44E+05 5.76E+05 2.30E+06 9.21E+06 1.84E+07 3.68E+07

Software 3.41E+05 1.37E+06 2.73E+06 5.46E+06 1.09E+07 1.09E+07 2.18E+07

Power (Module) 4.10E+05 1.64E+06 3.28E+06 6.55E+06 1.31E+07 1.31E+07 2.62E+07

Power (Cabinet) 1.18E+05 4.71E+05 4.71E+05 9.42E+05 9.42E+05 9.42E+05 1.88E+06

Power (Multi-cabinet) 1.18E+04 4.71E+04 4.71E+04 9.42E+04 9.42E+04 9.42E+04 1.88E+05

Power (Global) 4.09E+03 4.09E+03 4.09E+03 4.09E+03 4.09E+03 4.09E+03 4.09E+03

Mean time to interrupt in hours 50.52 12.63 3.24 0.82 0.21 0.10 0.05
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used solely for estimating the overheads of preserva-
tion and restoration.

5.2. Error/fault model

Projecting fault and error rates to the exascale
regime is arguably more error-prone than the predic-
tion of system parameters. Our assumptions on error
scaling are summarized at the bottom of Table 2. We
assume that the per-core soft-error susceptibility will
remain roughly constant as technology scales. This ac-
counts for increased transistor density and susceptibil-
ity coupled with improvements in error protection and
detection techniques. Even under this assumption, the
per-processor error rate we use is more than an order of
magnitude greater than typical HPC processors today.
For memory, we project that error rates will increase
in proportion to memory capacities. We assume that
socket failures, due to either system software or hard
faults, will scale directly with the number of sockets,
and similarly that power and network related failures
will scale with the number of modules and cabinets.
We expect multi-cabinet and global failures to be one
and two orders of magnitude less frequent than single-
cabinet failures, respectively. We base the initial val-
ues for fault and error rates on numbers reported in re-
cent published work [15,33–35] and on private conver-
sations with several hardware vendors. As with system
configurations, we did our best to choose what we be-
lieve are reasonable numbers for future systems, and
also evaluate sensitivity by sweeping error rates.

5.3. Applications

We evaluate three mini-applications that we map to
CDs: a Monte Carlo method neutron transport appli-
cation, hierarchically-blocked iterative sparse matrix–
vector multiplication, and the HPCCG conjugate-
gradient based linear system solver from the Mantevo
mini-application suite [17]. We break each application
into hierarchical CDs and then map it onto each of the
system configurations. We tune CD parameters using
the tool described in Section 4. We discuss the map-
ping options and parameters in the next section. We
also obtain the optimal checkpoint intervals for h-CPR
and g-CPR for each application, machine configuration
and error rate.

5.3.1. Neutron Transport (NT)
A Monte Carlo approach to the simulation of neu-

tron transport is desirable because the creation and
simulation of every particle is independent, making the

problem embarrassingly parallel. The major source of
communication takes place in a parallel reduction to
aggregate particle properties over the whole system.
CDs can take advantage of the stochastic nature of the
Monte Carlo approach – the only state that needs to be
preserved (and cannot be quickly rematerialized) is a
global tally of particle densities and directions. Erro-
neous particles and failed CDs may be discarded with-
out consequence, such that particle-local data does not
need to be preserved or recovered. For this application,
we assume that the checkpointing schemes preserve a
volume equivalent to 80% of each node’s memory.

5.3.2. Sparse Matrix Vector Multiplication (SpMV)
We scale SpMV to use a fixed percentage of mem-

ory and to perform roughly the same amount of work
per core of each machine. One iteration takes roughly
0.5 s to execute and consumes 50% of memory. At
the end of each iteration there is a barrier, followed
by communication. In the strict model, all leaf CDs
must complete before any communication can occur.
Thus, the run time of each leaf CD is limited by its
communication interval. As explained in the detailed
example in Section 3, leaf CDs utilize preservation
tradeoffs: intermediate indices and sums are preserved
locally in DRAM while the inputs are preserved via
parent. SpMV can take advantage of relaxed CDs to
increase the interval between full preservation, but our
experiments did not indicate significant gain in perfor-
mance efficiency. For this application, the checkpoint-
ing schemes preserve a volume equivalent to 50% of
each node’s memory.

5.3.3. HPCCG
HPCCG is a linear system solver that uses the con-

jugate gradient method and can scale to a large number
of nodes [17]. This mini-application uses a simple and
standard sparse implementation with MPI. The appli-
cation evenly partitions rows across cores (leaf CDs)
with each core responsible entirely for its partition.
This application is similar to SpMV, but our SpMV
implementation is hierarchically nested and HPCCG
distributes entire rows. We scale the size of the input
matrix linearly with the number of cores and assume
weak scaling. Because each node communicates with
its neighboring nodes at the end of each computation,
every node is dependent on every other node and, in
effect, a soft barrier is necessary before a new iteration
can start. Thus, with strict CDs, data is preserved at the
beginning of each iteration. Since it is communicating
frequently, similar to SpMV, the duration of a leaf CD
is limited by the soft barrier. HPCCG takes mostly read
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only data as input, thus, it is mapped to preserve those
data to the parent level CD, and the leaves preserve
the state that is essential for re-execution. HPCCG of-
fers similar relaxed-CD tradeoffs as SpMV and simi-
larly did not exhibit significant differences in perfor-
mance efficiency. For this application, the checkpoint-
ing schemes preserve a volume equivalent to 10% of
each node’s memory.

5.4. Simulator and model validation

As mentioned previously, containment domain se-
mantics can capture the behavior of other resilience
schemes. To validate our simulator, we simulate the
multi-level hierarchical checkpoint restart resilience
scheme with the configuration described by Moody
et al. [24]. We thus make a direct comparison, which
demonstrates a good match between the two evalua-
tion methodologies (Fig. 8). We use the performance
efficiency, which is the fraction of machine resources
(nodes and time) used to make forward progress, as our
main evaluation metric. We also tested a range of con-
figurations and verified that the analytical model and
the CD-level simulator match within 3% in reported
performance efficiency. Note that a full system imple-
mentation of CDs requires the management of substan-
tial metadata, the cost of which is not captured by ei-
ther the model or simulator. The application mappings
in this paper do not use deep CD hierarchies or fine-
grained domains, however, such that these metadata
management overheads can be neglected. Initial exper-
iments with a prototype that is still under development
confirm this assumption.

6. Evaluation

In this section, we discuss the results of exploring a
realistic subset of the CD design space. We find that
CDs offer superior flexibility and that fine-tuning re-
silience schemes improves performance and energy ef-
ficiency when compared to alternative approaches. The
results also show that CDs scale well to very large
system sizes and error rates, while even hierarchical
checkpoint-restart loses significant efficiencies in such
cases. Note that the point of the evaluation is to study
the effectiveness of CDs and that the optimizations are
enabled in a structured manner, using our modeling
tool for tuning rather than relying ad-hoc approaches.
We do not claim that previous methods are inadequate
or that similar benefits cannot be attained with explicit
tuning and code modifications.

Figure 9 shows the expected performance efficiency
and energy overheads due to resilience for each ap-
plication when using CDs, h-CPR and g-CPR. The
solid bars indicate performance efficiency when com-
pared to an implementation that assumes no failures
or errors and performs no preservation or recovery.
Similarly, the clear bars represent the overall relative
energy overhead (average power multiplied by execu-
tion time relative to baseline, or more accurately, av-
erage power divided by performance efficiency). Be-
cause uncertainty exists in both machine parameters
and error rates, we also evaluate the applications and
systems with error rates that are 10 and 50 times higher
than our baseline and with a preservation overhead that
is 10 times higher than baseline (to model lower global
bandwidth than we projected). We summarize these re-
sults in Fig. 10.

Fig. 8. Comparison of the CD simulator and an h-CPR analytical model [23]. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-130374.)
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Fig. 9. Performance efficiency (solid bars) and energy overheads (clear bars) with CDs, h-CPR and g-CPR for the three applications across a
range of system scales. For each application, we indicate the equivalent fraction of memory preserved by the checkpointing schemes. Note that
g-CPR fails to complete execution with some applications and scales and often incurs very high energy overheads. (Colors are visible in the
online version of the article; http://dx.doi.org/10.3233/SPR-130374.)

Fig. 10. Performance efficiency of the three applications using CDs and h-CPR with different relative error rates and preservation overheads.
(Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-130374.)

The overall conclusion from our experiments is that
CDs consistently outperform the alternatives. Both
CDs and h-CPR utilize the storage hierarchy well, and
(with our baseline machine parameters) both scale to
the largest configuration. At that configuration, CDs
exhibit a 5–15% performance efficiency and a 7–19%
energy efficiency advantage over h-CPR. Note that h-
CPR causes all nodes to re-execute on recovery, and
thus energy overheads precisely track the inverse of
performance efficiency. With the uncoordinated and
overlapped recovery enabled by CDs, energy efficiency
is improved when compared to overall execution time.
This improvement is, however, small in the applica-
tions we evaluate because they have short-duration
leaves and a small degree of nesting, limiting the
potential benefits of hierarchical re-execution. Global
checkpoint-restart, as expected, does not scale well
in terms of either performance or energy overheads.
In fact, in some experiments, g-CPR failed to make
forward progress. When either error rate or preserva-
tion overhead is increased from the baseline, even h-
CPR starts suffering from low efficiency at the target
configurations. With CDs, however, high efficiency is
achieved; the lowest efficiency with CDs is still better
than a full replication approach [3], which suffers from
a greater than 50% penalty.

Of all three applications, neutron transport (NT) is
best at utilizing the hierarchy and tradeoffs enabled by
CDs. Because the computation of NT has long periods
of time between communications, each CD level can
be tuned to the optimal preservation interval. In addi-
tion, by preserving most of its data via a parent, the
error-free preservation overhead is much lower than
with a straightforward implementation using h-CPR.
Even though the memory footprint of NT is 80% of
all available memory, leaf CDs only preserve a small
fraction to DRAM. We assume a single checkpointing
scheme with h-CPR, which requires preserving the en-
tire dataset at each interval. Because a large fraction
of memory is utilized h-CPR must forgo DRAM-level
preservation entirely and rely on NVM. The efficient
preservation of NT with CDs enables it to tolerate even
a 10× increase in error rate or preservation overhead
while achieving greater than 80% efficiency.

Like NT, SpMV and HPCCG also preserve some of
the leaf data via a parent. Unlike NT, these two appli-
cations have a smaller memory footprint. SpMV uti-
lizes 50% of memory, which reduces the preservation
overhead of direct checkpointing, but still prevents h-
CPR from preserving to DRAM. CDs thus offer a very
substantial benefit, especially for larger configurations
and higher error rates and preservation overheads. De-
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spite this advantage, the overall performance of SpMV
is worst among the three applications. The reason is
that the tight communication requirements of the pro-
gram, coupled with significant memory use, reduce the
efficiency of preservation, even with CD optimizations.
HPCCG only uses 10% of memory and is thus the most
scalable when using either CDs or h-CPR. With CDs,
even with the largest machine and an error rate 50×
higher than our baseline estimate, HPCCG with CDs
still achieves over 80% efficiency, which is far better
than the only 30% achievable with h-CPR or the <50%
expected with full redundant MPI ranks. Because its
memory footprint is small and the fact that preserva-
tion is optimized, HPCCG with CDs is insensitive to
preservation overheads.

7. Conclusions

We present the concept of containment domains,
a flexible abstraction which encapsulates and expresses
resilience concerns. CDs rely on weak transactional
semantics and nesting to enable hierarchical and dis-
tributed state preservation, state restoration, and recov-
ery. In addition, CDs can tune error detection and re-
covery for different error types, allowing the resilience
scheme to adapt to available error detection mecha-
nisms and changing application needs. CDs are flexible
enough to leverage a large variety of existing system
resilience approaches without changing the program-
ming model or reverting to ad-hoc implementations.
Thus, the single CD abstraction can be used to tune
across a wide range tradeoff options. We demonstrate
through experimental evaluation that the tradeoffs in-
troduced by CDs are amenable to automatic optimiza-
tion with a CD-oriented analysis tool that we imple-
mented. The results show that hierarchical state preser-
vation and restoration with uncoordinated hierarchical
recovery can be exploited by CDs to improve perfor-
mance and energy efficiency even at very large ma-
chine scales in the presence of a high rate of errors
and failures. Some of our planned future work includes
the full-scale analysis of large applications mapped to
the CD framework, a deeper integration with existing
programming models, and the investigation of CD per-
formance with application-specific fault tolerant algo-
rithms.
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